Integral Calculus - Definite Integrals (Lecture-02)

If $f(x)$ is a periodic function of period $T$; then

$\int \limits _{0}^{\mathrm{nT}} f(\mathrm{x}) \mathrm{dx}=\mathrm{n} \int \limits _{0}^{\mathrm{T}} f(\mathrm{x}) \mathrm{d} \mathrm{x}$

Solved Examples

1. $\int \limits _{0}^{10} \mathrm{e}^{\{x\}} \mathrm{dx}=$

(a) $10(\mathrm{e}-1)$

(b) 10

Show Answer

Solution:

$\because f(\mathrm{x})$ is a periodic function of period 1 , then

$\int \limits _{0}^{1} \mathrm{e}^{\{x\}} \mathrm{dx} \quad = 10 \quad \int \limits _0^1 e^{x-[x]} d x$

$=10 \int \limits _{0}^{1} \mathrm{e}^{\mathrm{x}} \mathrm{dx} \quad = \quad 10\left(\mathrm{e}^{\mathrm{x}}\right) _{0}^{1}=10 .(\mathrm{e}-1)$

Answer: (a)

2. $\int \limits _{-\pi / 2}^{199 \pi / 2} \sqrt{1+\cos 2 \mathrm{x}} \mathrm{dx}$ is equal to

(a) $50 \sqrt{2}$

(b) $100 \sqrt{2}$

(c) $150 \sqrt{2}$

(d) $200 \sqrt{2}$

Show Answer

Solution:

$\begin{aligned} \int \limits _{-\pi / 2}^{199 \pi / 2} \sqrt{1+\cos 2 x} d x= & \int \limits _{-\pi / 2}^{199 \pi / 2} \sqrt{2 \cos ^{2} x} d x=\sqrt{2} \int \limits _{\dfrac{-\pi}{2}}^{\dfrac{199 \pi}{2}}|\cos x| d x=\sqrt{2} \int \limits _{0}^{100 \pi}|\cos x| d x \\ \\ =100 \sqrt{2} \int \limits _{0}^{\pi}|\cos x| d x & =100 \sqrt{2} \hspace{0.2cm} 2 \int \limits _{0}^{\dfrac{\pi}{2}}|\cos x| d x \\ \\ = & 200 \sqrt{2}(\sin x) _{0}^{\dfrac{\pi}{2}}=200 \sqrt{2}\left(\sin \dfrac{\pi}{2}-\sin 0\right)=200 \sqrt{2} \end{aligned}$

Answer: (d)

3. Let $f$ be a real valued function satisfying $f(\mathrm{x})+f(\mathrm{x}+6)=f(\mathrm{x}+3)+f(\mathrm{x}+9)$. Then $\int \limits _{\mathrm{x}}^{\mathrm{x}+12} f(\mathrm{t}) \mathrm{dt}$ is

(a) linear function of $\mathrm{x}$

(b) exponential function of $\mathrm{x}$

(c) a constant

(d) None of these

Show Answer

Solution:

$\because f(\mathrm{x})+f(\mathrm{x}+6)=f(\mathrm{x}+3)+f(\mathrm{x}+9)$ …………………(1)

Replace $x$ by $x+3$

$f(\mathrm{x}+3)+f(\mathrm{x}+9)=f(\mathrm{x}+6)+f(\mathrm{x}+12)$. …………………(2)

Adding (1) and (2) we get

$f(\mathrm{x})=f(\mathrm{x}+12)$

$\Rightarrow f(\mathrm{x})$ is a periodic function of period 12

Let $\mathrm{g}(\mathrm{x})=\int \limits _{\mathrm{x}}^{\mathrm{x}+12} f(\mathrm{t}) \mathrm{dt}$

$\therefore \mathrm{g}^{1}(\mathrm{x})=f(\mathrm{x}+12)-f(\mathrm{x})=0(\because f(\mathrm{x})=f(\mathrm{x}+12))$

$\Rightarrow \mathrm{g}(\mathrm{x})$ is constant

Answer: (c)

4. The value of $\int \limits _{-\pi / 4}^{n \pi-\pi / 4}|\sin x+\cos x| d x$ is

(a) $\sqrt{2} \mathrm{n}$

(B) $2 \sqrt{2} \mathrm{n}$

(c) $4 \sqrt{2} \mathrm{n}$

(d) None of these

Show Answer

Solution:

$\int \limits _{-\pi / 4}^{n \pi-\pi / 4} \sqrt{2}\left|\sin \left(x+\dfrac{\pi}{4}\right)\right| d x$

Put $\mathrm{x}+\dfrac{\pi}{4}=\mathrm{t}$

$\Rightarrow \sqrt{2} \int \limits _{0}^{\mathrm{nn}}|\operatorname{sint}| \mathrm{dt}=\sqrt{2} \mathrm{n} \int \limits _{0}^{\pi}|\operatorname{sint}| \mathrm{dt}$

$=\sqrt{2} \mathrm{n}(-\operatorname{cost}) _{0} \pi=\sqrt{2} \mathrm{n}(-\cos \pi+\cos 0)=2 \sqrt{2} \mathrm{n}$.

Answer: (b)

5. If $\int \limits _{a}^{b}|\sin x| d x=8$ and $\int \limits _{0}^{a+b}|\cos x| d x=9$

then the value of $a$ and $b$ are

(a) $\dfrac{\pi}{4}, \dfrac{17 \pi}{4}$

(b) $\dfrac{3 \pi}{4}, \dfrac{19 \pi}{4}$

(c) $\dfrac{\pi}{6}, \dfrac{25 \pi}{6}$

(d) None of these

Show Answer

Solution:

$\mathrm{b}-\mathrm{a}=4 \pi$ & $(\mathrm{a}+\mathrm{b})-0=\dfrac{9 \pi}{2}$

Solving we get $\quad \quad \mathrm{a}=\dfrac{\pi}{4} \quad \quad \mathrm{~b}=\dfrac{17 \pi}{4}$

6. If $\mathrm{A}=\int \limits _{1}^{\sin \theta} \dfrac{\mathrm{tdt}}{1+\mathrm{t}^{2}}$ & $\mathrm{~B}=\int \limits _{1}^{\operatorname{cosec} \theta} \dfrac{\mathrm{dt}}{\mathrm{t}\left(1+\mathrm{t}^{2}\right)}$, then the value of $\left|\begin{array}{ccc}\mathrm{A} & \mathrm{A}^{2} & \mathrm{~B} \\ \mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}} & \mathrm{B}^{2} & -1 \\ 1 & \mathrm{~A}^{2}+\mathrm{B}^{2} & -1\end{array}\right|$ is

(a) $\sin \theta$

(b) $\operatorname{cosec} \theta$

(c) 0

(d) 1

Show Answer

Solution:

Put $\mathrm{t}=\dfrac{1}{\mathrm{z}}$ in $\mathrm{B} \Rightarrow \mathrm{dt}=\dfrac{-1}{\mathrm{z}^{2}} \mathrm{dz}$

$\therefore$ the integral $\mathrm{B}$ reduces to

$\int \limits _{1}^{\sin \theta} \dfrac{-\dfrac{1}{\mathrm{z}^{2}} \mathrm{dz}}{\dfrac{1}{\mathrm{z}}\left(1+\dfrac{1}{\mathrm{z}^{2}}\right)}=-\int \limits _{1}^{\sin \theta} \dfrac{\mathrm{zdz}}{1+\mathrm{z}^{2}}=-\int \limits _{1}^{\sin \theta} \dfrac{\mathrm{tdt}}{1+\mathrm{t}^{2}}=-\mathrm{A}$

$\therefore \mathrm{A}+\mathrm{B}=0$

$\left|\begin{array}{ccc}\mathrm{A} & \mathrm{A}^{2} & \mathrm{~B} \\ \mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}} & \mathrm{B}^{2} & -1 \\ 1 & \mathrm{~A}^{2}+\mathrm{B}^{2} & -1\end{array}\right|=\left|\begin{array}{ccc}\mathrm{A} & \mathrm{A}^{2} & -\mathrm{A} \\ 1 & \mathrm{~A}^{2} & -1 \\ 1 & 2 \mathrm{~A}^{2} & -1\end{array}\right|=0$

(Applying $\mathrm{C} _{1} \rightarrow \mathrm{C} _{1}+\mathrm{C} _{3}$ )

7. $\int \limits _{e^{-1}}^{\tan x} \dfrac{\mathrm{t} d \mathrm{t}}{1+\mathrm{t}^{2}}+\int \limits _{\mathrm{e}^{-1}}^{\cos \mathrm{x}} \dfrac{\mathrm{dt}}{\mathrm{t}\left(1+\mathrm{t}^{2}\right)}=$

(a) 1

(b) e

(c) $\mathrm{e}^{-1}$

(d) $\dfrac{\pi}{4}$

Show Answer

Solution:

Put $\mathrm{t}=\dfrac{1}{\mathrm{z}}$ in 2nd integral

$\therefore \mathrm{dt}=-\dfrac{1}{\mathrm{z}^{2}} \mathrm{dz}$

2nd integral reduces to $\int \limits _{\mathrm{e}}^{\tan x} \dfrac{\dfrac{-1}{\mathrm{z}^{2}} \mathrm{dz}}{\dfrac{1}{\mathrm{z}}\left(1+\dfrac{1}{\mathrm{z}^{2}}\right)}=\int \limits _{\operatorname{tanx}}^{e} \dfrac{\mathrm{z} \cdot \mathrm{dz}}{1+\mathrm{z}^{2}}$

$\therefore \int \limits _{\dfrac{1}{e}}^{\tan x} \dfrac{\mathrm{tdt}}{1+\mathrm{t}^{2}}+\int \limits _{\tan \mathrm{x}}^{\mathrm{e}} \dfrac{\mathrm{tdt}}{1+\mathrm{t}^{2}}=\int \limits _{\dfrac{1}{\mathrm{c}}}^{\mathrm{e}} \dfrac{\mathrm{t} \cdot \mathrm{dt}}{1+\mathrm{t}^{2}}$

$=\dfrac{1}{2}\left(\log _{\mathrm{e}}\left(1+\mathrm{t}^{2}\right)\right) _{\dfrac{1}{\mathrm{e}}}{ }^{\mathrm{e}}=\dfrac{1}{2} \log \mathrm{e}\left(\dfrac{1+\mathrm{e}^{2}}{1+\mathrm{e}^{-2}}\right)=\dfrac{1}{2} \log _{\mathrm{e}} \mathrm{e}^{2}=1$

Answer : (a)

Exercise

1. $\mathrm{I}=\int \limits _{0}^{10} \sin {\mathrm{x}} \mathrm{dx}$

(a) 10

(b) $10(1-\cos 1)$

(c) $5(1-\cos 1)$

(d) $5 \cos 1$

Show Answer Answer: b

2. $\int \limits _{\pi}^{10 \pi}|\sin x| d x=$

(a) 20

(b) 8

(c) 10

(d) 18

Show Answer Answer: d

3. If $\mathrm{I} _{1}=\int \limits _{0}^{3 \pi} f\left(\cos ^{2} \mathrm{x}\right) \mathrm{dx}$ & $\mathrm{I} _{2}=\int \limits _{0}^{\pi} f\left(\cos ^{2} \mathrm{x}\right) \mathrm{dx}$ then

(a) $\mathrm{I} _{1}=\mathrm{I} _{2}$

(b) $\mathrm{I} _{1}=2 \mathrm{I} _{2}$

(c) $\mathrm{I} _{1}=5 \mathrm{I} _{2}$

(d) $\mathrm{I} _{1}=3 \mathrm{I} _{2}$

Show Answer Answer: d

4. $\quad \lim \limits _{n \rightarrow \infty} \dfrac{(n !)^{\dfrac{1}{n}}}{n^{n}}$ is equal to

(a) $\mathrm{e}$

(b) $\dfrac{1}{\mathrm{e}}$

(c) e-1

(d) $\mathrm{e}-5$

Show Answer Answer: b

5. The value of the definite integral $\int \limits _{0}^{1} \dfrac{\mathrm{xdx}}{\mathrm{x}^{3}+16}$ lies in the interval $[\mathrm{a}, \mathrm{b}]$. Then smallest such interval is

(a) $\left[0, \dfrac{1}{17}\right]$

(b) $[0,1]$

(c) $\left[0, \dfrac{1}{27}\right]$

(d) $\left[\dfrac{1}{17}, 1\right]$

Show Answer Answer: a

6. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ such that $f(\mathrm{x}+2 \mathrm{y})=f(\mathrm{x})+f(2 \mathrm{y})+4 \mathrm{xy}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ & $f(0)=0$ If $\mathrm{I} _{1}=\int \limits _{0}^{1} f(\mathrm{x}) \mathrm{dx}$,

$\mathrm{I} _{2}=\int \limits _{0}^{1} f(\mathrm{x}) \mathrm{dx}$ & $\mathrm{I} _{3}=\int \limits _{\dfrac{1}{2}}^{2} f(\mathrm{x}) \mathrm{dx}$, then

(a) $\mathrm{I} _{1}=\mathrm{I} _{2}>\mathrm{I} _{3}$

(b) $\mathrm{I} _{1}>\mathrm{I} _{2}>\mathrm{I} _{3}$

(c) $\mathrm{I} _{1}=$ $\mathrm{I} _{2}<\mathrm{I} _{3}$

(d) $\mathrm{I} _{1}<$ $\mathrm{I} _{2}<$ $\mathrm{I} _{3}$

Show Answer Answer: c

7. The integral $\int \limits _{\tan ^{-1} \lambda}^{\cot ^{-1} \lambda} \dfrac{\tan x}{\tan x+\cot x} d x, \forall \lambda \in \mathrm{R}$ can not take the value

(a) $\dfrac{-\pi}{4}$

(b) $\dfrac{-\pi}{2}$

(c) $\dfrac{\pi}{4}$

(d) $\dfrac{3 \pi}{4}$

Show Answer Answer: a, b, d

8. Read the following and answer the questions that follow :-

$I=\int \limits _{0}^{10 \pi} \dfrac{\cos 6 x \cos 7 x \cos 8 x \cos 9 x}{1+e^{2 \sin ^{3} 4 x}} d x$

(i) If $I=k \int \ limits _{0}^{\dfrac{\pi}{2}} \cos 6 \mathrm{x} \cos 7 \mathrm{x} \cos 8 \mathrm{x} \cos 9 \mathrm{xdx}$, then $\mathrm{k}=$

(a) 5

(b) 10

(c) 20

(d) None

(ii) If $I=c \int \limits _{0}^{\dfrac{\pi}{2}} \cos 6 x \cos 8 x \cos 2 x d x$, then $c=$

(a) 5

(b) 10

(c) 20

(d) None

(iii) The value of $\mathrm{I}=$

(a) $\dfrac{5 \pi}{4}$

(b) $\dfrac{5 \pi}{8}$

(c) $\dfrac{5 \pi}{16}$

(d) $\dfrac{5 \pi}{12}$

Show Answer Answer: (i) b (ii) a (iii) b

9. Match the following if

$I _{1}=\int \limits _{0}^{1} \dfrac{e^{\tan ^{-1} x}}{\sqrt{1+\mathrm{x}^{2}}} d x, \quad I _{2}=\int \limits _{0}^{1} \dfrac{x^{\tan ^{-1} x}}{\sqrt{1+\mathrm{x}^{2}}} d x, \quad I _{3}=\int \limits _{0}^{1} \dfrac{x^{2} e^{\tan ^{-1} x}}{\sqrt{1+\mathrm{x}^{2}}} d x$, then

Column I Column II
(a) $\mathrm{I} _{1}+\mathrm{I} _{2}$ (p) $3 / 2$
(b) $\mathrm{I} _{1}+\mathrm{I} _{2}-4 \mathrm{I} _{3}$ (q) 1
(c) $\dfrac{\mathrm{I} _{1}+\mathrm{I} _{2}+1}{\mathrm{I} _{1}+\mathrm{I} _{2}+2 \mathrm{I} _{3}}$ (r) $\sqrt{2} \mathrm{e}^{\pi / 4}-1$
(d) $\dfrac{2\left(\mathrm{I} _{1}+\mathrm{I} _{2}\right)}{2 \mathrm{I} _{3}+1}$ (s) $\sqrt{2} \mathrm{e}^{-\pi / 4}$
(t) $\sqrt{2} \mathrm{e}^{\pi / 4}-3$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{b} \rightarrow \mathrm{t}, \mathrm{c} \rightarrow \mathrm{q}, \mathrm{d} \rightarrow \mathrm{r}$

10. Let $S _{n}=\sum \limits _{k=0}^{n} \dfrac{n}{n^{2}+k n+k^{2}}$ & $T _{n}=\sum \limits _{k=0}^{n-1} \dfrac{n}{n^{2}+k n+k^{2}}$ for $n=1,2,3$ then

(a) $\mathrm{S} _{\mathrm{n}}<\dfrac{\pi}{3 \sqrt{3}}$

(b) $\mathrm{S} _{\mathrm{n}}>\dfrac{\pi}{3 \sqrt{3}}$

(c) $\mathrm{T} _{\mathrm{n}}<\dfrac{\pi}{3 \sqrt{3}}$

(d) $\mathrm{T} _{\mathrm{n}}>\dfrac{\pi}{3 \sqrt{3}}$

Show Answer Answer: a, d

11. $\int \limits _{0}^{[x]} \dfrac{2^{x}}{2^{[x]}} d x$ is

(a) $[\mathrm{x}] \log _{\mathrm{e}} 2$

(b) $\dfrac{[\mathrm{x}]}{\log _{\mathrm{e}} 2}$

(c) $\dfrac{1}{2} \dfrac{[\mathrm{x}]}{\log _{\mathrm{e}} 2}$

(d) None of these.

Show Answer Answer: b

12. The number of positive continuous functions $f(\mathrm{x})$ defined in $[0,1]$ for which $\int \limits _{0}^{1} f(\mathrm{x}) \mathrm{dx}=1$,

$\int \limits _{0}^{1} \mathrm{x} f(\mathrm{x}) \mathrm{dx}=\mathrm{a}, \int \limits _{0}^{1} \mathrm{x}^{2} f(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{a}^{2}$ is

(a) one

(b) infinite

(c) two

(d) zero

Show Answer Answer: d


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ