Integral Calculus Definite Integrals(Lecture-03)

Property:

Limit as a sum

  • Express the given series in the form of $\sum \dfrac{1}{\mathrm{n}} f\left(\dfrac{\mathrm{r}}{\mathrm{n}}\right)$

  • Then the limit as its sum when $\mathrm{n} \rightarrow \infty$ i.e. $\lim \limits _{\mathrm{n} \rightarrow \infty} \sum \dfrac{1}{\mathrm{n}} . f\left(\dfrac{\mathrm{r}}{\mathrm{n}}\right)$

  • Replace $\dfrac{\mathrm{r}}{\mathrm{n}}$ by $x$ and $\dfrac{1}{\mathrm{n}}$ by $\mathrm{dx}$ and $\dfrac{1}{\mathrm{n}}$ by the sign of $\int$

Solved Examples

1. $\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{1}{\mathrm{n}+1}+\dfrac{1}{\mathrm{n}+2}+\dfrac{1}{\mathrm{n}+3}+—-+\dfrac{1}{2 \mathrm{n}}=$

(a) 1

(b) 2

(c) $\log _{\mathrm{e}} 2$

(d) $\log _{e} 4$

Show Answer

Solution: $\lim \limits _{n \rightarrow \infty} \sum \limits _{r=1}^{n} \dfrac{1}{n+r}=\lim \limits _{n \rightarrow \infty} \dfrac{1}{n} \sum \limits _{r=1}^{n} \dfrac{1}{1+\dfrac{r}{n}}$

$=\int _{0}^{1} \dfrac{d x}{1+x}=\log _{\mathrm{e}} 2$

Answer: c

2. The value of $\sum \limits _{\mathrm{r}=0}^{\mathrm{n}-1} \dfrac{1}{\sqrt{4 \mathrm{n}^{2}-\mathrm{r}^{2}}}$ as $\mathrm{n} \rightarrow \infty$ is

(a) $\dfrac{\pi}{3}$

(b) $\dfrac{\pi}{6}$

(c) $\dfrac{\pi}{4}$

(d) none of these

Show Answer

Solution: $\sum \limits _{\mathrm{r}=0}^{\mathrm{n}-1} \dfrac{1}{\sqrt{4 \mathrm{n}^{2}-\mathrm{r}^{2}}}=\dfrac{1}{\mathrm{n}} \sum \limits _{\mathrm{r}=0}^{\mathrm{n}-1} \dfrac{1}{\sqrt{4-\left(\dfrac{\mathrm{r}}{\mathrm{n}}\right)^{2}}}=\int _{0}^{1} \dfrac{\mathrm{dx}}{\sqrt{4-\mathrm{x}^{2}}}=\left(\sin ^{-1} \dfrac{\mathrm{x}}{2}\right) _{0}^{1}$

$=\sin ^{-1} \dfrac{1}{2}-\sin ^{-1} 0=\dfrac{\pi}{6}$

Answer: b

3. The value of $\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{\left(1^{2}+2^{2}+3^{2}+-+\mathrm{n}^{2}\right)\left(1^{3}+2^{3}+-+\mathrm{n}^{3}\right)}{1^{6}+2^{6}+—–+\mathrm{n}^{6}}$

(a) 1

(b) $\dfrac{7}{12}$

(c) $\dfrac{5}{6}$

(d) none

Show Answer

Solution: $\lim \limits _{n \rightarrow \infty} \dfrac{\left(\sum \limits _{r=1}^n r^2 \cdot \sum \limits _{r=1}^n r^3\right)}{\sum \limits _{r=1}^n r^6}$

$=\lim \limits _{n \rightarrow \infty} \dfrac{\left(\dfrac{1}{n} \sum \limits _{r=1}^n\left(\dfrac{r}{n}\right)^2\right)\left(\dfrac{1}{n} \sum \limits _{r=1}^n\left(\dfrac{r}{n}\right)^3\right)}{\dfrac{1}{n} \sum \limits _{r=1}^n\left(\dfrac{r}{n}\right)^6}$

$=\dfrac{\int_0^1 x^2 d x \int_0^1 x^3 d x}{\int_0^1 x^6 d x}=\dfrac{7}{12}$

4. $\int _{0}^{1}\left[\dfrac{2}{\mathrm{e}^{\mathrm{x}}}\right] \mathrm{dx}$ is equal to

(a) $\log _{e} 2$

(b) $\mathrm{e}^{2}$

(c) 0

(d) $\dfrac{2}{\mathrm{e}}$

Show Answer

Solution: $\int _{0}^{2}\left[2 \mathrm{e}^{-\mathrm{x}}\right] \mathrm{dx}=\int _{0}^{\log _{c} 2} 1 \mathrm{dx}+\int _{\log _{c} 2}^{\infty} 0 \mathrm{dx}$

$=\log _{\mathrm{e}} 2$

Answer: a

5. The value of $\int _{0}^{\pi / 3}[\sqrt{3} \tan x] d x$ is

(a) $\dfrac{5 \pi}{6}$

(b) $\dfrac{5 \pi}{6}-\tan ^{-1} \dfrac{2}{\sqrt{3}}$

(c) $\dfrac{\pi}{2}-\tan ^{-1} \dfrac{2}{\sqrt{3}}$

(d) none

Show Answer

Solution: $\int _{0}^{\pi / 3}[\sqrt{3} \tan x] d x=\int _{0}^{\pi / 6} 0 \mathrm{dx}+\int _{\pi / 6}^{\tan ^{-1} \dfrac{2}{3}} 1 \mathrm{dx}+\int _{\tan ^{-1} \dfrac{2}{\sqrt{3}}}^{\pi / 3} 2 \mathrm{dx}$

$\begin{aligned} & =0+\left(\tan ^{-1} \dfrac{2}{\sqrt{3}}-\dfrac{\pi}{6}\right)+2\left(\dfrac{\pi}{3}-\tan ^{-1} \dfrac{2}{\sqrt{3}}\right) \\ & =\quad \dfrac{\pi}{2}-\tan ^{-1} \dfrac{2}{\sqrt{3}} \end{aligned}$

Answer: c

6. $\int _{-1}^{1}[\mathrm{x}[1+\sin \pi \mathrm{x}]+1] \mathrm{dx}$ is equal to

(a) 2

(b) 0

(c) 1

(d) none

Show Answer

Solution: $\int _{-1}^{0} 1 \cdot \mathrm{dx}+\int _{0}^{1}[\mathrm{x}+1] \cdot \mathrm{dx}$

$=\int _{-1}^{0}[x \cdot 0+1] d x+\int _{0}^{1}[x \cdot 1+1] d x$

$\begin{array}{ll} = & \int _{-1}^{0} 1 \mathrm{dx}+\int _{0}^{1}([\mathrm{x}]+1) \mathrm{dx} \\ \\ = & (\mathrm{x}) _{-1}^{0}+(\mathrm{x}) _{0}^{1} \\ \\ = & 1+1=2 \end{array}$

Answer: a

7. $\int _{0}^{2}\left[\mathrm{x}^{2}-1\right] \mathrm{dx}$ is equal to

(a) $3-\sqrt{3}-\sqrt{2}$

(b) 2

(c) 1

(d) $3-2 \sqrt{3}-3 \sqrt{2}$

Show Answer

Solution: $\int _{0}^{1}(-1) \mathrm{dx}+\int _{1}^{\sqrt{2}} 0 \mathrm{dx}+\int _{\sqrt{2}}^{\sqrt{3}} 1 \mathrm{dx}+\int _{\sqrt{3}}^{2} 2 \mathrm{dx}$

$\begin{aligned} & =-(1-0)+0+1(\sqrt{3}-\sqrt{2})+2(2-\sqrt{3}) \\ \\ & =-1+\sqrt{3}-\sqrt{2}+4-2 \sqrt{3} \\ \\ & = 3-\sqrt{3}-\sqrt{2} \end{aligned}$

Answer: a

Exercise

1. $\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{1^{\mathrm{P}}+2^{\mathrm{P}}+3^{\mathrm{P}}+……+\mathrm{n}^{\mathrm{P}}}{\mathrm{n}^{\mathrm{P}}+1}=$

(a) $\dfrac{1}{\mathrm{P}+1}$

(b) $\dfrac{1}{1-\mathrm{P}}$

(c) $\dfrac{1}{\mathrm{P}}-\dfrac{1}{\mathrm{P}-1}$

(d) $\dfrac{\mathrm{P}}{\mathrm{P}+1}$

Show Answer Answer: a

2. Let a,b,c be non-zero real numbers such that $\int _{0}^{1}\left(1+\cos ^{8} \mathrm{x}\right)\left(a x^{2}+\mathrm{bx}+\mathrm{c}\right) \mathrm{dx}$

$=\int _{0}^{2}\left(1+\cos ^{8} \mathrm{x}\right)\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right) \mathrm{dx}$. Then the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has

(a) no root in $(0,2)$

(b) at least one root in $(1,2)$

(c) a double root in $(0,2)$

(d) two imaginary roots

Show Answer Answer: b

3. For every function $f(\mathrm{x})$ which is twice differentiable these will be good approximation of

$\begin{aligned} & \int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\dfrac{\mathrm{b}-\mathrm{a}}{2}(f(\mathrm{a})+f(\mathrm{~b})), \text { for more accurate results for } \mathrm{c} \in(\mathrm{a}, \mathrm{b}) \\ & \mathrm{F}(\mathrm{c})=\dfrac{\mathrm{c}-\mathrm{a}}{2}(f(\mathrm{a})-f(\mathrm{c}))+\dfrac{\mathrm{b}-\mathrm{c}}{2}(f(\mathrm{~b})-f(\mathrm{c})) \quad \text { where } \quad \mathrm{c}=\dfrac{\mathrm{a}+\mathrm{b}}{2} \\ & \int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\dfrac{\mathrm{b}-\mathrm{a}}{4}(f(\mathrm{a})+f(\mathrm{~b})+2 f(\mathrm{c})) \mathrm{dx} \end{aligned}$

i. Good approximation of $\int _{0}^{\pi / 2} \sin x d x$ is

(a) $\dfrac{\pi}{4}$

(b) $\dfrac{\pi(\sqrt{2}+1)}{4}$

(c) $\dfrac{\pi(\sqrt{2}+1)}{8}$

(d) $\dfrac{\pi}{8}$

ii. If $f^{\prime \prime}(\mathrm{x})<0, \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$ & $ (\mathrm{c}, f(\mathrm{c}))$ is point of maximum where $\mathrm{c} \in(\mathrm{a} . \mathrm{b})$ then $f^{\prime}(\mathrm{c})$ is

(a) $\dfrac{f(\mathrm{~b})-f(\mathrm{a})}{\mathrm{b}-\mathrm{a}}$

(b) $3\left(\dfrac{f(\mathrm{~b})-f(\mathrm{a})}{\mathrm{b}-\mathrm{a}}\right)$

(c) $2\left(\dfrac{f(\mathrm{~b})-f(\mathrm{a})}{\mathrm{b}-\mathrm{a}}\right)$

(d) 0

iii. If $\lim \limits _{\mathrm{t} \rightarrow \mathrm{a}} \dfrac{\int \limits _{\mathrm{a}}^{\mathrm{t}} f(\mathrm{x}) \mathrm{dx}-\dfrac{\mathrm{t}-\mathrm{a}}{2}(f(\mathrm{t})+f(\mathrm{a}))}{(\mathrm{t}-\mathrm{a})^{3}}=0$, then degree of polynomial function $f(\mathrm{x})$ at most is

(a) 0

(b) 1

(c) 3

(d) 2

Show Answer Answer: (i) c (ii) a (iii) b

4. Match the following:-

Column I Column II
a. $\int _{0}^{\infty} \mathrm{e}^{-4 \mathrm{x}} \sin 5 \mathrm{x} d \mathrm{x}$ (p) 3
b. $\int _{2}^{8} \dfrac{\left[x^{2}\right] d x}{\left[x^{2}-20 x+100\right]+\left[x^{2}\right]}$ (q) $\dfrac{5}{41}$
c. $\int _{0}^{3 \pi / 2}|\sin x| d x, n \in N$ (r) 120
d. $\int _{0}^{\infty} x^{5} e^{-x} d x$ (s) 60
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{q} ; \mathrm{b} \rightarrow \mathrm{p} ; \mathrm{c} \rightarrow \mathrm{p} ; \mathrm{d} \rightarrow \mathrm{r} ;$

5. $\int _{1}^{3} \dfrac{d x}{x^{2}+[x]^{2}+1-2 x[x]}=$

(a) $\pi$

(b) $3 \pi$

(c) $8 \pi$

(d) $\dfrac{\pi}{2}$

Show Answer Answer: d

6.* If $I _{n}=\int _{-\pi}^{\pi} \dfrac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, n=0,1,2, \ldots \ldots$ then

(a) $I _{n}=I _{n+2}$

(b) $\sum \limits _{\mathrm{m}=1}^{10} \mathrm{I} _{2 \mathrm{~m}+1}=10 \pi$

(c) $\sum \limits _{\mathrm{m}=1}^{10} \mathrm{I} _{2 \mathrm{~m}}=0$

(d) $I _{n}=I _{n+1}$

Show Answer Answer: a, b, c

7. All the values of a for which $\int _{1}^{2}\left(a^{2}+(4-4 a) x+4 x^{3}\right) d x \leq 12$ are given by

(a) $\mathrm{a} \leq 4$

(b) $a=3$

(c) $0 \leq \mathrm{a}<3$

(d) none of these

Show Answer Answer: b

8. Value of $\int _{0}^{2}\left[x^{2}-x+1\right] d x$ is

(a) $\dfrac{7+\sqrt{5}}{2}$

(b) $\dfrac{5-\sqrt{5}}{2}$

(c) $\dfrac{7-\sqrt{5}}{2}$

(d) none of these

Show Answer Answer: b

9. If $I=\int _{0}^{1} \dfrac{d x}{\left(5+2 x-2 x^{2}\right)\left(1+e^{2-4 x}\right)}$ and $I _{1}=\int _{0}^{1} \dfrac{d x}{5+2 x-2 x^{2}} d x$ then

(a) $\mathrm{I}=\dfrac{1}{2} \mathrm{I} _{1}$

(b) $\mathrm{I}=2 \mathrm{I} _{1}$

(c) $3 \mathrm{I}=5 \mathrm{I} _{1}$

(d) none of these

Show Answer Answer: a

10. Match the following:-

Column I Column II
a. $\lim \limits _{n \rightarrow \infty} \sum \limits _{\mathrm{r}=1}^{\mathrm{n}} \dfrac{\mathrm{r}^{2}}{\mathrm{r}^{3}+\mathrm{n}^{3}}$ (p) $\log _{e} 2$
b. $\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{1}{\mathrm{n}}\left(\tan \dfrac{\pi}{4 \mathrm{n}}+\tan \dfrac{2 \pi}{4 \mathrm{n}}+\ldots . .+\tan \dfrac{\pi}{4}\right)$ (q) $2 \log _{\mathrm{e}} 2$
c. $\lim \limits _{\mathrm{n} \rightarrow \infty} \dfrac{1}{\mathrm{n}}\left(1+\dfrac{1}{\mathrm{n}^{2}}\right)^{2 / \mathrm{n}^{2}}\left(1+\dfrac{2^{2}}{\mathrm{n}^{2}}\right)^{4 / \mathrm{n}^{2}} \ldots . .\left(1+\dfrac{\mathrm{n}^{2}}{\mathrm{n}^{2}}\right)^{2 \mathrm{n} / \mathrm{n}^{2}}$ (r) $\dfrac{2}{\pi} \log _{\mathrm{e}} 2$
d. $\int _{0}^{\infty}\left[2 \mathrm{e}^{-\mathrm{x}}\right] \mathrm{dx}$ (s) $\dfrac{1}{3} \log _{\mathrm{e}} 2$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{q} ; \mathrm{d} \rightarrow \mathrm{p} ;$

11. $\int _{0}^{2}\left[\tan ^{-1} x\right] d x+\int _{0}^{2}\left[\cot ^{-1} x\right] d x=$

(a) $1-\cot 2$

(b) $1+\cot 2$

(c) $2(1+\cot 2)$

(d) $2(1-\cot 2)$

Show Answer Answer: c

12.* Match the following

([.] denotes the greatest integer function)

Column I Column II
a. If $\mu<\int _{0}^{1} \dfrac{x^{7} d x}{\sqrt[3]{1+x^{8}}}<\lambda$, then (p) $[\lambda+\mu]=2$
b. If $\mu<\int _{0}^{1} \dfrac{d x}{\sqrt{1+x^{6}}}<\lambda$, then (q) $[\lambda+\mu]=4$
c. If $\mu<\int _{0}^{1} \dfrac{d x}{\sqrt{4-x^{2}-x^{3}}}<\lambda$, then (r) $[\lambda-\mu]=0$
(s) $[\lambda-\mu]=3$
(t) $[\lambda+\mu]=0$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{r}, \mathrm{t} ; \mathrm{b} \rightarrow \mathrm{p}, \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{q}, \mathrm{s} ;$


Table of Contents

sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ