Integral Calculus - Areas

The area bounded by the curve $\mathrm{y}=f(\mathrm{x})$, the $\mathrm{x}-$ axis, the ordinates $\mathrm{x}=\mathrm{a}$ & $\mathrm{x}=\mathrm{b}$ is $\mathrm{A}=\left|\int _{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}\right|$.

Curve sketching steps:

For sketching the graph of $f(\mathrm{x})$,

i. Determine domain, identifying where $f$ is not defined.

ii. Determine $\mathrm{x}$ intercept & y intercept, if possible.

iii. Determine asymptotes:

(a) For vertical asymptotes, check for rational function zero denominators, or undefined $\log$ function points.

(b) For horizontal asymptotes, consider $\lim \limits _{\mathrm{x} \rightarrow \pm \infty} f(\mathrm{x})$.

iv. Determine critical numbers,

(check where $f^{\prime}(\mathrm{x})=0$ or $f^{\prime}(\mathrm{x})$ does not exist, and finding intervals where $f$ is increasing or decreasing).

v. Determine inflection points.

(check where $f^{\prime \prime}(\mathrm{x})=0$ or $f^{\prime \prime}(\mathrm{x})$ or does not exist)

vi. plot intercepts, critical points, inflection points, asymptotes and other points as needed.

vii. Connect plotted points with smooth curve.

Some useful results

1. Area between $y^{2}=4 a x$ & $x^{2}=4$ by is $\dfrac{16 a b}{3}$ sq. units.

2. Area between $\mathrm{y}^{2}=4 \mathrm{ax}$ & its latus rectum is $\dfrac{8 \mathrm{a}^{2}}{3}$ sq.units.

3. Area between $\mathrm{y}^{2}=4 \mathrm{ax}$ & line $\mathrm{y}=\mathrm{mx}$ is $\dfrac{8 \mathrm{a}^{2}}{3 \mathrm{~m}^{3}}$ sq. units.

4. Area between $\sqrt{x}+\sqrt{y}=\sqrt{a}, x=0$ & $y=0$ is $\dfrac{a^{2}}{6}$ sq. units.

5. Area enclosed by $\left(\dfrac{\mathrm{x}}{\mathrm{a}}\right)^{2 / 3}+\left(\dfrac{\mathrm{y}}{\mathrm{b}}\right)^{2 / 3}=1$ is $\dfrac{3 \pi \mathrm{ab}}{8}$ sq. units.

6. Area of one $\operatorname{arc}$ of $\mathrm{y}=\operatorname{sinax}($ or $\mathrm{y}=\operatorname{cosax})$ and $\mathrm{x}$ axis is $2 / a$ sq. units.

7. Area of the region bounded by $y=|a x+b|($ or $x=|a y+b|)$ and $x$ axis (or $y$ axis) is $\dfrac{b^{2}}{a^{2}} s q$. units.

8. Area of $\dfrac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\dfrac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ is $\pi$ab sq. units.

9. Area bounded by $\left\{(x, y): \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}} \leq 1 \leq \dfrac{x}{a}+\dfrac{y}{b}\right\}$ is $\dfrac{a b}{4}(\pi-2)$ sq.units.

10. Area of rhombus formed by $a x \pm b y \pm c=0$ is $\dfrac{2 c^{2}}{|a b|}$ sq. units.

11. Area of the triangle formed by $y=m _{1} x+c _{1}, y=m _{2} x+c _{2}, y=m _{3} x+c _{3}$ is $\dfrac{1}{2}\left|\sum \dfrac{\left(c _{1}-c _{2}\right)^{2}}{m _{1}-m _{2}}\right|$ sq. units.

Solved Examples:

1. The area of triangle formed by the tangent $&$ normal at the point $(1, \sqrt{3})$ on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ and $\mathrm{x}-$ axis is

(a) 3

(b) $2 \sqrt{3}$

(c) $3 \sqrt{2}$

(d) 4

Show Answer

Solution:

Equation of tangent is $x+\sqrt{3 y}=4$.

Point $\mathrm{Q}$ is $(4,0)$

$\therefore$ Area of triangle $=\dfrac{1}{2} \cdot 4 \cdot \sqrt{3}=2 \sqrt{3}$ sq.units

Answer: b

2. The area bounded by the curves $y=\sqrt{5-x^{2}}$ & $y=|x-1|$ is

(a) $\dfrac{5 \pi-1}{4}$

(b) $\dfrac{5 \pi+1}{4}$

(c) $\dfrac{5 \pi-2}{4}$

(d) $\dfrac{5 \pi-3}{4}$

Show Answer

Solution:

The two shaded areas are congruent

$\therefore$ Area $\mathrm{ACEF}=\dfrac{\text { Area of circle }}{4}-$ Area $\triangle \mathrm{OAD}$

$=\dfrac{5 \pi}{4}-\dfrac{1}{2}=\dfrac{5 \pi-2}{4}$ sq.units

Answer: c

3. If two circles each of unit radius intersect orthogonally, the common area of the circle is

(a) $\dfrac{2 \pi}{3}-\sqrt{3}$

(b) $\dfrac{2 \pi}{3}+\sqrt{3}$

(c) $\dfrac{2 \pi}{3}-\dfrac{\sqrt{3}}{2}$

(d) $\dfrac{2 \pi}{3}+\dfrac{\sqrt{3}}{2}$

Show Answer

Solution:

Required area $=2$. Area of sector $\mathrm{ABC}-$ Area of square $\mathrm{ABCD}$

$=\left(\dfrac{90}{360} \cdot \pi\right) 2-1^{2}=\dfrac{\pi}{2}-1$ sq.units.

Answer: d

4. The possible values of $m$ for which the area bounded by the curves $y=x-x^{2}$ and $y=m x$ equal to $\dfrac{9}{2}$ sq. unit is

(a) -4

(b) -2

(c) 2

(d) none of these

Show Answer

Solution: The curves meet at $\mathrm{x}=0$ and $\mathrm{x}=1-\mathrm{m}$

$\begin{aligned} & \therefore \int _{0}^{1-m}\left(x-x^{2}\right)-m x \cdot d x= \pm \dfrac{9}{2} \\ \\ & \Rightarrow \int _{0}^{1-m}(1-m) x-x^{2} \cdot d x= \pm \dfrac{9}{2} \\ \\ & \Rightarrow \left((1-m) \dfrac{x^{2}}{2}-\dfrac{x^{3}}{2}\right) _{0}^{1-m}= \pm \dfrac{9}{2} \\ \\ & \Rightarrow (1-m)^{3}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=\dfrac{9}{2} \\ \\ & \Rightarrow (1-m)^{3}= \pm 27 \\ \\ & \Rightarrow 1-m= \pm 3 \\ \\ & \Rightarrow m=-2,4 \end{aligned}$

Answer: b

5. The area bounded by the curves $y=\log _{e} x, y=\log _{e}|x|, y=\left|\log _{e} x\right|$ and $y=\left|\log _{e}\right| x||$ is.

(a) 4

(b) 6

(c) 10

(d) 12

Show Answer

Solution:

$\therefore \mathrm{A}=4 \int _{0}^{1}\left|\log _{\mathrm{e}} \mathrm{x}\right| \mathrm{dx}=-4 \int _{0}^{1} \log _{\mathrm{e}} \mathrm{x} \mathrm{dx}$

$=-4\left(x \log _{\mathrm{e}} \mathrm{x}-\mathrm{x}\right) _{0}^{1}$

$=-4(-1-0)$

$=4$ sq.units.

Answer: a

6. The ratio in which the area bounded by the curves $y^{2}=12 x$ & $x^{2}=12 y$ is divided by the line $\mathrm{x}=3$ is

(a) $15: 49$

(b) $13: 37$

(c) $15: 23$

(d) $17: 50$

Show Answer

Solution:

Required ratio $=\dfrac{\int _{0}^{3} \sqrt{12 x}-\dfrac{x^{2}}{12} \cdot d x}{\int _{0}^{3} \sqrt{12 x}-\dfrac{x^{2}}{12} \cdot d x}=\dfrac{15}{49}$

Answer: a

7. The area bounded by the curve $\mathrm{y}=\mathrm{x}+\sin \mathrm{x}$ and its inverse between the ordinates $\mathrm{x}=0$ and $\mathrm{x}=2 \pi$ is

(a) $4 \pi$

(b) $8 \pi$

(c) 4

(d) 8

Show Answer

Solution:

$A=2 \int _{0}^{2 \pi}(x+\sin x)-x d x=4 \int _{0}^{\pi}(x+\sin x)-x d x$

$=2.2(-\cos x) _{0}^{\pi}$

$=4(-\cos \pi+\cos 0)$

$=8$

Answer: d

Exercise:

1. The area bounded by $\mathrm{y}=f(\mathrm{x})$, the $\mathrm{x}$-axis and the ordintes $\mathrm{x}=1$ & $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$. Then $f(\mathrm{x})$ is

(a) $(x-1) \cos (3 x+4)$

(b) $8 \sin (3 x+4)$

(c) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$

(d) none of the above

Show Answer Answer: c

2. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 , then the value of $b$ is

(a) -1

(b) 3

(c) -3

(d) 1

Show Answer Answer: c

3. The area bounded by $y=(x-1)^{2}, y=(x+1)^{2}$ & $y=\dfrac{1}{4}$

(a) $\dfrac{1}{3}$ sq.unit

(b) $\dfrac{2}{3}$ sq.unit

(c) $\dfrac{1}{4}$ sq.unit

(d) $\dfrac{1}{5}$ sq.unit

Show Answer Answer: a

4. Let the straight line $\mathrm{x}=\mathrm{b}$ divide the area enclosed by $\mathrm{y}=(1-\mathrm{x})^{2}, \mathrm{y}=0$ & $\mathrm{x}=0$ into two parts $R _{1}(0 \leq x \leq b)$ & $R _{2}(b \leq x \leq 1)$ such that $R _{1}-R _{2}=\dfrac{1}{4}$. Then $b$ is

(a) $\dfrac{3}{4}$

(b) $\dfrac{1}{2}$

(c) $\dfrac{1}{3}$

(d) $\dfrac{1}{4}$

Show Answer Answer: b

5. The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\dfrac{x^{2}}{9}+\dfrac{y^{2}}{5}=1$ is

(a) $\dfrac{27}{4}$ sq.unit

(b) 9 sq.unit

(c) $\dfrac{27}{2}$ sq.unit

(d) 27 sq.unit

Show Answer Answer: d

6. The area of the region containing the points ( $x, y$ ) satisfying $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$ is

(a) 8 sq.units

(b) 2 sq.units

(c) $4 \pi$ sq.units

(d) $2 \pi$ sq.units

Show Answer Answer: a

7. The area of the region between the curves $y=\sqrt{\dfrac{1+\sin x}{\cos x}}$ and $y=\sqrt{\dfrac{1-\sin x}{\cos x}}$ bounded by the lines $\mathrm{x}=0$ & $\mathrm{x}=\dfrac{\pi}{4}$ is

(a) $\int _{0}^{\sqrt{2}-1} \dfrac{\mathrm{tdt}}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}}$

(b) $\int _{0}^{\sqrt{2}-1} \dfrac{4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}$

(c) $\int _{0}^{\sqrt{2}+1} \dfrac{4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}$

(d) $\int _{0}^{\sqrt{2}+1} \dfrac{\mathrm{t}}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}$

Show Answer Answer: b

8. Read the passage and answer the following questions:-

If the curve $y=f(x)$ satisfy the equation $y\left(x+y^{3}\right) d x=x\left(y^{3}-x\right) d y$ and $g(x)$

$g(x)=\int _{1 / 8}^{\sin ^{2} x} \sin ^{-1} \sqrt{t} d t+\int _{1 / 8}^{\cos ^{2} x} \cos ^{-1} \sqrt{t} d t$, where $x \in\left[0, \dfrac{\pi}{2}\right]$, then

i. Equation of curve $\mathrm{y}=f(\mathrm{x})$ passes through $(4,-2)$ is

(a) $3 y=(-54 x)^{\dfrac{1}{3}}$

(b) $2 y=(-16 x)^{\dfrac{1}{3}}$

(c) $y=(-2 x)^{\dfrac{1}{3}}$

(d) none of these

ii. Area bounded by curve $\mathrm{y}=f(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{y}$ axis is

(a) $\dfrac{1}{4}\left(\dfrac{3 \pi}{16}\right)^{4}$

(b) $\dfrac{1}{8}\left(\dfrac{3 \pi}{16}\right)^{4}$

(c) $\dfrac{1}{8}\left(\dfrac{3 \pi}{8}\right)^{4}$

(d) none of these

Show Answer Answer: (i) c (ii) b

9. The maximum area of the rectangle whose sides pass through the angular points of a given rectangle of sides $a \& b$ is

(a) $\dfrac{1}{2}(\mathrm{ab})^{2}$

(b) $\dfrac{1}{2}(a+b)$

(c) $\dfrac{1}{2}(a+b)^{2}$

(d) none of these

Show Answer Answer: c

10. Consider a square with vertices at $(1,1),(-1,1),(-1,-1)$ & $(1,-1)$. Let $S$ be the region consisting of all points inside the square which are nearer to the orgin than to any edge. Area of the region is________________________

Show Answer Answer: $\dfrac{4}{3}(4 \sqrt{2}-5)$

11. The area bounded by $\min (|x|,|y|)=2$ and $\max (|x|,|y|)=4$ is

(a) 8 sq.unit

(b) 16 sq.unit

(c) 24 sq.unit

(d) 32 sq.unit

Show Answer Answer: b

12. The area of the region bounded by

$[x]^{2}=[y]^{2} \text {, if } x \in[1,5] \text { is }$

(a) 4

(b) 8

(c) 5

(d) 10

Show Answer Answer: b

13. Match the following:-

Column I Column II
a. Area enclosed by $[\mathrm{x}]^{2}=[\mathrm{y}]^{2} \text { for } 1 \leq \mathrm{x} \leq 4$ (p) 8 sq.units
b. Area enclosed by $[|x|]+[|y|]=2$ (q) 6 sq.units
c. Area enclosed by $[|x|][|y|]=2$ (r) 4 sq.units
d. Area enclosed by $\dfrac{| \mathrm{x} \mid]}{| \mathrm{y} \mid]}=2,-5 \leq \mathrm{x} \leq 5$ (s) 12 sq.units
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{q} ; \mathrm{b} \rightarrow \mathrm{s} ; \mathrm{c} \rightarrow \mathrm{p} ; \mathrm{d} \rightarrow \mathrm{p}$


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ