Matrices And Determinants - Properties and Evaluation of Determinants (Lecture-01)

DETERMINANTS

Minors & cofactors of elements of a determinant.

It we delete the row and column passing through the element $\mathrm{a} _{\mathrm{i}}$, the determinant thus obtained is called the minor of $a _{i j}$ denoted by $M _{i j}$ and cofactor of $a _{i j}$ is $(-1)^{i+j} M _{i j}$ and is denoted by $A _{i j}$ or $C _{i j}$.

Note :

If all the elements in a row (or column), except one element, are zeros the determinant reduces to a determinant of an order less by one.

$\operatorname{Eg}:\left|\begin{array}{ccc}5 & 0 & 0 \\ 7 & 3 & -2 \\ 1 & 5 & 4\end{array}\right|=5\left|\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right|$

Also a determinant can be replaced by a determinant of higher order by one.

Eg: $\left|\begin{array}{cc}3 & 2 \\ 8 & -5\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 8 & -5\end{array}\right|$

Singular or non singular matrix :

A square matrix A is said to be non-singular if $|\mathrm{A}| \neq 0$, and is said to be singular if $|\mathrm{A}|=0$

Properties of determinants

For a square matrix A,

(i) If a row (column) is a zero vector, then $|\mathrm{A}|=0$

(ii) If any two rows (columns) are proportional, then $|\mathrm{A}|=0$

(iii) If the rows & columns are interchanged, then $|\mathrm{A}|$ remains the same i.e. $|\mathrm{A}|=\left|\mathrm{A}^{\mathrm{T}}\right|$

(iv) If any two rows (columns) are interchanged, value of $|\mathrm{A}|$ differ by a negative sign.

(v) $\quad\left|\begin{array}{ccc}\mathrm{ka} & \mathrm{kb} & \mathrm{kc} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|=\mathrm{k}\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|$

(vi) If A is a square matrix of order $n$, then $|\mathrm{kA}|=\mathrm{k}^{\mathrm{n}}|\mathrm{A}|$

(vii) $\left|\begin{array}{ccc}\mathrm{a} _{1}+\mathrm{a} _{2} & \mathrm{~b} _{1}+\mathrm{b} _{2} & \mathrm{c} _{1}+\mathrm{c} _{2} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|=\left|\begin{array}{ccc}\mathrm{a} _{1} & \mathrm{~b} _{1} & \mathrm{c} _{1} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|+\left|\begin{array}{ccc}\mathrm{a} _{2} & \mathrm{~b} _{2} & \mathrm{c} _{2} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|$

(viii) If a scalar multiple of any row (column) is added to another row (column) then $|\mathrm{A}|$ is unchanged.

i.e. $\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|=\left|\begin{array}{ccc}\mathrm{a}+\lambda \mathrm{p} & \mathrm{b}+\lambda \mathrm{q} & \mathrm{c}+\lambda \mathrm{r} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ \mathrm{u} & \mathrm{v} & \mathrm{w}\end{array}\right|$

(ix) The sum of the products of elements of any row (column) of a determinant with the cofactors of the corresponding elements of any other row (column) is zero

If, A = $\left[\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right] \text {, then } a_{11} C_{21}+a_{12} C_{22}+a_{13} C_{23}=0$

(x) The sum of the products of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of same row is $|\mathrm{A}|$

i.e. $\mathrm{a} _{11} \mathrm{C} _{11}+\mathrm{a} _{12} \mathrm{C} _{12}+\mathrm{a} _{13} \mathrm{C} _{13}=|\mathrm{A}|$.

(xi) If r rows (columns) become identical when ’ $a$ ’ is substituted for $\mathrm{x}$, then $(\mathrm{x}-\mathrm{a})^{r-1}$ is a factor of the given determinant.

$\operatorname{Eg}: \operatorname{Let} A(x)=\left|\begin{array}{ccc}x-2 & x-3 & x-4 \\ x-3 & x-5 & 2 x-8 \\ x-4 & x-6 & 3 x-10\end{array}\right|$

Put $x=1$

$\Delta=\left|\begin{array}{lll}-1 & -2 & -3 \\ -2 & -4 & -6 \\ -3 & -5 & -7\end{array}\right|=0$

$\left(\mathrm{R} _{1} \& \mathrm{R} _{2}\right.$ are proportional)

(xii) If $\mathrm{A}=\operatorname{diag}\left(\mathrm{a} _{11}, \mathrm{a} _{22}, \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{a} _{\mathrm{nn}}\right)$ then

$|A|=a _{11} a _{22} \ldots \ldots \ldots \ldots a _{n n}$

(xiii) $\quad|\mathrm{AB}|=|\mathrm{A}||\overrightarrow{\mathrm{B}}|=|\mathrm{BA}|=\left|\mathrm{AB}^{\mathrm{T}}\right|=\left|\mathrm{A}^{\mathrm{T}} \mathrm{B}\right|=\left|\mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}}\right|$

(xiv) Let $\Delta(x)=\left|\begin{array}{lll}a(x) & b(x) & c(x) \\ p(x) & q(x) & r(x) \\ u(x) & v(x) & w(x)\end{array}\right|$, then

$\dfrac{d}{d x} \Delta(x)=\left|\begin{array}{ccc}a^{1}(x) & b^{1}(x) & c^{1}(x) \\ p(x) & q(x) & r(x) \\ u(x) & v(x) & w(x)\end{array}\right|+\left|\begin{array}{ccc}a(x) & b(x) & c(x) \\ p^{1}(x) & q^{1}(x) & r^{1}(x) \\ u(x) & v(x) & w(x)\end{array}\right|+\left|\begin{array}{ccc}a(x) & b(x) & c(x) \\ p(x) & q(x) & r(x) \\ u^{1}(x) & v^{1}(x) & w^{1}(x)\end{array}\right|$

(xv) Product of determinants of same order

$\begin{aligned} & \left|\begin{array}{lll} a _{1} & b _{1} & c _{1} \\ a _{2} & b _{2} & c _{2} \\ a _{3} & b _{3} & c _{3} \end{array}\right| \times\left|\begin{array}{lll} \alpha _{1} & \beta _{1} & \gamma _{1} \\ \alpha _{2} & \beta _{2} & \gamma _{2} \\ \alpha _{3} & \beta _{3} & \gamma _{3} \end{array}\right| \\ & =\left|\begin{array}{lll} a _{1} \alpha _{1}+b _{1} \beta _{1}+c _{1} \gamma _{1} & a _{1} \alpha _{2}+b _{1} \beta _{2}+c _{1} \gamma _{2} & a _{1} \alpha _{3}+b _{1} \beta _{3}+c _{1} \gamma _{3} \\ a _{2} \alpha _{1}+b _{2} \beta _{1}+c _{2} \gamma _{1} & a _{2} \alpha _{2}+b _{2} \beta _{2}+c _{2} \gamma _{2} & a _{2} \alpha _{3}+b _{2} \beta _{3}+c _{2} \gamma _{3} \\ a _{3} \alpha _{1}+b _{3} \beta _{1}+c _{3} \gamma _{1} & a _{3} \alpha _{2}+b _{3} \beta _{2}+c _{3} \gamma _{2} & a _{3} \alpha _{3}+b _{3} \beta _{3}+c _{3} \gamma _{3} \end{array}\right| \end{aligned}$

Multiplication can also be performed row by column ; column by row or column by column as required in the problem.

(xvi) $\left|\mathrm{A}^{\mathrm{n}}\right|=|\mathrm{A}|^{\mathrm{n}}$

(xvii) Determinant of a skew symmetric matrix of odd order is zero

Use of Determinants :

(i) Area of triangle whose vertices are $\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right)\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right)\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$ is given by

$\Delta=\dfrac{1}{2}\left|\begin{array}{lll}\mathrm{x} _{1} & \mathrm{y} _{1} & 1 \\ \mathrm{x} _{2} & \mathrm{y} _{2} & 1 \\ \mathrm{x} _{3} & \mathrm{x} _{3} & 1\end{array}\right|$

(ii) If $a _{1} x+b _{1} y+c _{1}=0, a _{2} x+b _{2} y+c _{2}=0 \& a _{3} x+b _{3} y+c _{3}=0$ are the sides of a triangle, the area of the triangle is given by

$\Delta=\dfrac{1}{2 \mathrm{C} _{1} \mathrm{C} _{2} \mathrm{C} _{3}}\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{~b} _{1} & \mathrm{c} _{1} \\ \mathrm{a} _{2} & \mathrm{~b} _{2} & \mathrm{c} _{2} \\ \mathrm{a} _{3} & \mathrm{~b} _{3} & \mathrm{c} _{3}\end{array}\right|^{2}$ where $\mathrm{C} _{1}, \mathrm{C} _{2}, \mathrm{C} _{3}$ are the cofactor of $\mathrm{c} _{1}, \mathrm{c} _{2} \& \mathrm{c} _{3}$ respectively in $\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{~b} _{1} & \mathrm{c} _{1} \\ \mathrm{a} _{2} & \mathrm{~b} _{2} & \mathrm{c} _{2} \\ \mathrm{a} _{3} & \mathrm{~b} _{3} & \mathrm{c} _{3}\end{array}\right|$

(ii) $\quad \mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ represents a pair of straight lines, then

$a b c+2 f g h-a f^{2}-b^{2}-c^{2}=\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=0$

Cramer’s rule for solving simultaneous linear equations

Consider the system of equations

$\mathrm{a} _{1} \mathrm{x}+\mathrm{b} _{1} \mathrm{y}+\mathrm{c} _{1} \mathrm{z}=\mathrm{d} _{1}$

$\mathrm{a} _{2} \mathrm{x}+\mathrm{b} _{2} \mathrm{y}+\mathrm{c} _{2} \mathrm{z}=\mathrm{d} _{2}$

$\mathrm{a} _{3} \mathrm{x}+\mathrm{b} _{3} \mathrm{y}+\mathrm{c} _{3} \mathrm{z}=\mathrm{d} _{3}$

Here $\Delta=\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{~b} _{1} & \mathrm{c} _{1} \\ \mathrm{a} _{2} & \mathrm{~b} _{2} & \mathrm{c} _{2} \\ \mathrm{a} _{3} & \mathrm{~b} _{3} & \mathrm{c} _{3}\end{array}\right|$,

$\Delta _{1}=\left|\begin{array}{lll}\mathrm{d} _{1} & \mathrm{~b} _{1} & \mathrm{c} _{1} \\ \mathrm{~d} _{2} & \mathrm{~b} _{2} & \mathrm{c} _{2} \\ \mathrm{~d} _{3} & \mathrm{~b} _{3} & \mathrm{c} _{3}\end{array}\right|$

$\Delta _{2}=\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{~d} _{1} & \mathrm{c} _{1} \\ \mathrm{a} _{2} & \mathrm{~d} _{2} & \mathrm{c} _{2} \\ \mathrm{a} _{3} & \mathrm{~d} _{3} & \mathrm{c} _{3}\end{array}\right|$

$\Delta _{3}=\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{~b} _{1} & \mathrm{~d} _{1} \\ \mathrm{a} _{2} & \mathrm{~b} _{2} & \mathrm{~d} _{2} \\ \mathrm{a} _{3} & \mathrm{~b} _{3} & \mathrm{~d} _{3}\end{array}\right|$

By cramer’s rule,

$\mathrm{x}=\dfrac{\Delta _{1}}{\Delta}, \mathrm{y}=\dfrac{\Delta _{2}}{\Delta}, \mathrm{z}=\dfrac{\Delta _{3}}{\Delta}$

In the above system, if $\mathrm{d} _{1}=\mathrm{d} _{2}=\mathrm{d} _{3}=0$, it is called a homogeneous system.

Solved Examples

1. The value of the determinant

$\left|\begin{array}{lll} \cos (\mathrm{A}-\mathrm{P}) & \cos (\mathrm{A}-\mathrm{Q}) & \cos (\mathrm{A}-\mathrm{R}) \\ \cos (\mathrm{B}-\mathrm{P}) & \cos (\mathrm{B}-\mathrm{Q}) & \cos (\mathrm{B}-\mathrm{R}) \\ \cos (\mathrm{C}-\mathrm{P}) & \cos (\mathrm{C}-\mathrm{Q}) & \cos (\mathrm{C}-\mathrm{R}) \end{array}\right| \text { is }$

(a) 0

(b) 1

(c) $\sin 2 \mathrm{~A} \sin 2 \mathrm{~B} \sin 2 \mathrm{C}$

(d) None of these

Show Answer

None of these

Solution :

We can write the given determinant as the product of two determinants

$\left|\begin{array}{ccc}\cos (\mathrm{A}-\mathrm{P}) & \cos (\mathrm{A}-\mathrm{Q}) & \cos (\mathrm{A}-\mathrm{R}) \\ \cos (\mathrm{B}-\mathrm{P}) & \cos (\mathrm{B}-\mathrm{Q}) & \cos (\mathrm{B}-\mathrm{R}) \\ \cos (\mathrm{C}-\mathrm{P}) & \cos (\mathrm{C}-\mathrm{Q}) & \cos (\mathrm{C}-\mathrm{R})\end{array}\right|=\left|\begin{array}{lll}\cos \mathrm{A} & \sin \mathrm{A} & 0 \\ \cos \mathrm{B} & \sin \mathrm{B} & 0 \\ \cos \mathrm{C} & \sin \mathrm{C} & 0\end{array}\right|\left|\begin{array}{ccc}\cos \mathrm{P} & \sin \mathrm{P} & 0 \\ \cos \mathrm{Q} & \sin \mathrm{Q} & 0 \\ \cos \mathrm{R} & \sin \mathrm{R} & 0\end{array}\right|=0$

Answer: (a)

2. If $\left|\begin{array}{lll} \left(a _{1}-b _{1}\right)^{2} & \left(a _{1}-b _{2}\right)^{2} & \left(a _{1}-b _{3}\right)^{2} \\ \left(a _{2}-b _{1}\right)^{2} & \left(a _{2}-b _{2}\right)^{2} & \left(a _{2}-b _{3}\right)^{2} \\ \left(a _{3}-b _{1}\right)^{2} & \left(a _{3}-b _{2}\right)^{2} & \left(a _{3}-b _{3}\right)^{2} \end{array}\right|=k\left(a _{1}-a _{2}\right)\left(a _{2}-a _{3}\right)\left(a _{3}-a _{1}\right)\left(b _{1}-b _{2}\right)\left(b _{2}-b _{3}\right)\left(b _{3}-b _{1}\right) \text {, then } k$

is equal to

(a) 1

(b) 2

(c) 4

(d) 8

Show Answer

Solution :

The given determinant can be written as

$\left|\begin{array}{lll}\mathrm{a} _{1}{ }^{2} & -2 \mathrm{a} _{1} & 1 \\ \mathrm{a} _{2}{ }^{2} & -2 \mathrm{a} _{2} & 1 \\ \mathrm{a} _{3}{ }^{2} & -2 \mathrm{a} _{3} & 1\end{array}\right| \times\left|\begin{array}{lll}1 & \mathrm{~b} _{1} & \mathrm{~b} _{1}{ }^{2} \\ 1 & \mathrm{~b} _{2} & \mathrm{~b} _{2}{ }^{2} \\ 1 & \mathrm{~b} _{3} & \mathrm{~b} _{3}{ }^{2}\end{array}\right|$

$=-2\left|\begin{array}{lll}\mathrm{a} _{1}{ }^{2} & \mathrm{a} _{1} & 1 \\ \mathrm{a} _{2}{ }^{2} & \mathrm{a} _{2} & 1 \\ \mathrm{a} _{3}{ }^{2} & \mathrm{a} _{3} & 1\end{array}\right| \times\left|\begin{array}{lll}1 & \mathrm{~b} _{1} & \mathrm{~b} _{1}{ }^{2} \\ 1 & \mathrm{~b} _{2} & \mathrm{~b} _{2}{ }^{2} \\ 1 & \mathrm{~b} _{3} & \mathrm{~b} _{3}{ }^{2}\end{array}\right|$

$=2\left|\begin{array}{lll}1 & \mathrm{a} _{1} & \mathrm{a} _{1}{ }^{2} \\ 1 & \mathrm{a} _{2} & \mathrm{a} _{2}{ }^{2} \\ 1 & \mathrm{a} _{3} & \mathrm{a} _{3}{ }^{2}\end{array}\right| \times\left|\begin{array}{lll}1 & \mathrm{~b} _{1} & \mathrm{~b} _{1}{ }^{2} \\ 1 & \mathrm{~b} _{2} & \mathrm{~b} _{2}{ }^{2} \\ 1 & \mathrm{~b} _{3} & \mathrm{~b} _{3}{ }^{2}\end{array}\right|$

$=2\left(\mathrm{a} _{1}-\mathrm{a} _{2}\right)\left(\mathrm{a} _{2}-\mathrm{a} _{3}\right)\left(\mathrm{a} _{3}-\mathrm{a} _{1}\right)\left(\mathrm{b} _{1}-\mathrm{b} _{2}\right)\left(\mathrm{b} _{2}-\mathrm{b} _{3}\right)\left(\mathrm{b} _{3}-\mathrm{b} _{1}\right) ;$ comparing $\mathrm{k}=2$

Answer: (b)

3. If the value of determinant $\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|$ is positive, then

(a) abc $>1$

(b) abc $>-8$

(c) abc $<-8$

(d) $a b c>-2$

Show Answer

Solution :

$\begin{aligned} & \Delta=\left|\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 1 & \mathrm{~b} & 1 \\ 1 & 1 & \mathrm{c}\end{array}\right|=\mathrm{abc}-(\mathrm{a}+\mathrm{b}+\mathrm{c})+2>0 \ & \Rightarrow a b c+2>\mathrm{a}+\mathrm{b}+\mathrm{c}\end{aligned}$

$a b c+2>3(a b c)^{\dfrac{1}{3}}\left(\because \dfrac{a+b+c}{3}>(a b c)^{\dfrac{1}{3}}\right)$

$\Rightarrow \quad x^{3}+2>3 x$ where $x=(a b c)^{\dfrac{1}{3}}$

$\mathrm{x}^{3}-3 \mathrm{x}+2>0 \quad \Rightarrow \quad(\mathrm{x}-1)^{2}(\mathrm{x}+2)>0 \Rightarrow \mathrm{x}>-2$

$(a b c)^{\dfrac{1}{3}}>-2 \quad \Rightarrow \quad a b c>-8$

Answer: (b)

4. If $\alpha, \beta$ and $\gamma$ are such that $\alpha+\beta+\gamma=0$, then $\left|\begin{array}{ccc}1 & \cos \gamma & \cos \beta \\ \cos \gamma & 1 & \cos \alpha \\ \cos \beta & \cos \alpha & 1\end{array}\right|$ is equal to

(a) $\cos \alpha \cos \beta \cos \gamma$

(b) $\cos \alpha+\cos \beta+\cos \gamma$

(c) 1

(d) None of these

Show Answer

Solution :

Let $\alpha=\mathrm{B}-\mathrm{C}, \beta=\mathrm{C}-\mathrm{A}, \gamma=\mathrm{A}-\mathrm{B}$

Solution :

$\therefore\left|\begin{array}{ccc}1 & \cos (\mathrm{A}-\mathrm{B}) & \cos (\mathrm{C}-\mathrm{A}) \\ \cos (\mathrm{A}-\mathrm{B}) & 1 & \cos (\mathrm{B}-\mathrm{C}) \\ \cos (\mathrm{C}-\mathrm{A}) & \cos (\mathrm{B}-\mathrm{C}) & 1\end{array}\right|=\left|\begin{array}{ccc}\cos \mathrm{A} & \sin \mathrm{A} & 0 \\ \cos \mathrm{B} & \sin \mathrm{B} & 0 \\ \cos \mathrm{C} & \sin \mathrm{C} & 0\end{array}\right|\left|\begin{array}{ccc}\cos \mathrm{A} & \sin \mathrm{A} & 0 \\ \cos \mathrm{B} & \sin \mathrm{B} & 0 \\ \cos \mathrm{C} & \sin \mathrm{C} & 0\end{array}\right|=0$

Answer: (d)

5. If $\Delta=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$, then $\Delta \in$

(a) $[1-\sqrt{2}, 1+\sqrt{2}]$

(b) $[-1,1]$

(c) $[-\sqrt{2}, \sqrt{2}]$

(d) None of these

Show Answer

Solution :

Apply $R _{3} \rightarrow R _{3}-\left(\cos \beta . R _{1}+\sin \beta . R _{2}\right.$

$\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ 0 & 0 & 1+\sin \beta-\cos \beta\end{array}\right|=1+\sin \beta-\cos \beta$

$\therefore \Delta \in\lfloor 1-\sqrt{2}, 1+\sqrt{2}\rfloor$

Answer: (a)

Exercise

1. If $\mathrm{D} _{\mathrm{k}}=\left|\begin{array}{ccc}1 & \mathrm{n} & \mathrm{n} \\ 2 \mathrm{k} & \mathrm{n}^{2}+\mathrm{n}+2 & \mathrm{n}^{2}+\mathrm{n} \\ 2 \mathrm{k}-1 & \mathrm{n}^{2} & \mathrm{n}^{2}+\mathrm{n}+2\end{array}\right|$ and $\sum\limits _{\mathrm{k}=1}^{\mathrm{n}} \mathrm{D} _{\mathrm{k}}=48$, then $\mathrm{n}$ equals

(a) 4

(b) 6

(c) 8

(d) 10

Show Answer Answer: d

2. If $f(x)=\left|\begin{array}{ccc}\sin x & \operatorname{cosec} x & \tan x \\ \sec x & x \sin x & x \tan x \\ x^{2}-1 & \cos x & x^{2}+1\end{array}\right|$, then $\int _{-a}^{a}|f(x)| d x=$

(a) 1

(b) -1

(c) $2 \mathrm{a}$

(d) 0

Show Answer Answer: d

3. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of $\triangle \mathrm{ABC}$, then $\left|\begin{array}{lll}\sin ^{2} \mathrm{~A} & \cot \mathrm{A} & 1 \\ \sin ^{2} \mathrm{~B} & \cot \mathrm{B} & 1 \\ \sin ^{2} \mathrm{C} & \cot \mathrm{C} & 1\end{array}\right|=$

(a) $\dfrac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{4 \Delta}$

(b) $\dfrac{a^{2}+b^{2}+c^{2}}{4 R^{2} \Delta}$

(c) $\dfrac{a^{2}+b^{2}+c^{2}}{16 R^{2} \Delta}$

(d) 0

Show Answer Answer: d

4. A triangle has vertices $A _{i}\left(x _{i}, y _{i}\right)$ for $i=1,2,3$. Then the determinant

$\Delta=\left|\begin{array}{lll}\mathrm{x} _{2}-\mathrm{x} _{3} & \mathrm{y} _{2}-\mathrm{y} _{3} & \mathrm{y} _{1}\left(\mathrm{y} _{2}-\mathrm{y} _{3}\right)+\mathrm{x} _{1}\left(\mathrm{x} _{2}-\mathrm{x} _{3}\right) \\ \mathrm{x} _{3}-\mathrm{x} _{1} & \mathrm{y} _{3}-\mathrm{y} _{1} & \mathrm{y} _{2}\left(\mathrm{y} _{3}-\mathrm{y} _{1}\right)+\mathrm{x} _{2}\left(\mathrm{x} _{3}-\mathrm{x} _{1}\right) \\ \mathrm{x} _{1}-\mathrm{x} _{2} & \mathrm{y} _{2}-\mathrm{y} _{2} & \mathrm{y} _{3}\left(\mathrm{y} _{1}-\mathrm{y} _{2}\right)+\mathrm{x} _{3}\left(\mathrm{x} _{1}-\mathrm{x} _{2}\right)\end{array}\right|=0$ means

(a) the medians for triangle $\mathrm{A} _{1} \mathrm{~A} _{2} \mathrm{~A} _{3}$ are concurrent

(b) the triangle $\mathrm{A} _{1} \mathrm{~A} _{2} \mathrm{~A} _{3}$ is right angled at $\mathrm{A} _{3}$

(b) the triangle $\mathrm{A} _{1} \mathrm{~A} _{2} \mathrm{~A} _{3}$ equilateral triangle

(b) altitudes of the triangle $\mathrm{A} _{1} \mathrm{~A} _{2} \mathrm{~A} _{3}$ are concurrent

Show Answer Answer: d

5. Let $\left\{\mathrm{D} _{1}, \mathrm{D} _{2}, \mathrm{D} _{3}\right.$……………..$D _{n}$}be the set of all third order determinants that can be formed with the distinct nonzero real numbers $\mathrm{a} _{1}, \mathrm{a} _{2}, \ldots \ldots \ldots . \mathrm{a} _{9}$, then

(a) $\sum\limits _{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D} _{\mathrm{i}}=1$

(b) $\sum\limits _{i=1}^{n} D _{i}=0$

(c) $\mathrm{D} _{\mathrm{i}}=\mathrm{D} _{\mathrm{i}} \forall \mathrm{i} \& \mathrm{j}$

(d) None of these

Show Answer Answer: b

6. If the value of $\left|\begin{array}{ccc}(-1)^{n} a & (-1)^{n+1} b & (-1)^{n+2} c \\ a+1 & b-1 & c+1 \\ a-1 & b+1 & c-1\end{array}\right|+\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b-1 & b+1 \\ c & c+1 & c-1\end{array}\right|$ is zero, then the value of $n$ is

(a) any even integer

(b) any odd integer

(c) any positive integer

(d) zero

Show Answer Answer: b

7. $\Delta _{1}=\left|\begin{array}{lll}y^{5} z^{6}\left(z^{3}-y^{3}\right) & x^{4} z^{6}\left(x^{3}-z^{3}\right) & x^{4} y^{5}\left(y^{3}-x^{3}\right) \\ y^{2} z^{3}\left(y^{6}-z^{6}\right) & x z^{3}\left(z^{6}-x^{6}\right) & x y^{2}\left(x^{6}-y^{6}\right) \\ y^{2} z^{3}\left(z^{3}-y^{3}\right) & x z^{3}\left(x^{3}-z^{3}\right) & x y^{2}\left(y^{3}-x^{3}\right)\end{array}\right|$ and

$\Delta _{2}=\left|\begin{array}{lll}x & y^{2} & z^{3} \\ x^{4} & y^{5} & z^{6} \\ x^{7} & y^{8} & z^{9}\end{array}\right|$ then $\Delta _{1} \Delta _{2}$ is equal to

(a) $\Delta _{2}{ }^{3}$

(b) $\Delta _{2}{ }^{2}$

(c) $\Delta _{2}{ }^{4}$

(d) $\Delta _{2}{ }^{5}$

Show Answer Answer: a

8. Match the following :

Column I Column II
(a) If $\mathrm{r}>1, \mathrm{M} _{\mathrm{r}}=\left|\begin{array}{ll}\mathrm{r}-1 & \dfrac{1}{\mathrm{r}} \\ 1 & \dfrac{1}{(\mathrm{r}-1)^{2}}\end{array}\right|$ (p) 2
then $\lim \limits _{n \rarr \infty}$ $(\mid M_2 \mid $+ $\mid M_3 \mid $ + $\mid M_4 \mid $ $\ldots$+ $\mid M_n \mid $ $)^{log_e n}$ is (q) 4
(b) If $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right], \mathrm{C}=\left(\mathrm{BAB}^{-1}\right)\left(\mathrm{B}^{-1} \mathrm{~A}^{\mathrm{T}} \mathrm{B}\right)$ then $\sqrt{|\mathrm{C}|}=$ (r) 1
(c) If $\mathrm{A}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ and $\mathrm{A} _{4}=-\lambda \mathrm{I} _{1}$ then $\lambda=$ (s) 3
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{q} ; \mathrm{c} \rightarrow \mathrm{q}$

9. If $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ then the value of $\left|\begin{array}{lll}\mathrm{pa} & \mathrm{qb} & \mathrm{rc} \\ \mathrm{qc} & \mathrm{ra} & \mathrm{pb} \\ \mathrm{rb} & \mathrm{pc} & \mathrm{qa}\end{array}\right|$ is

(a) 0

(c) 1

(b) $a p+b q+c r$

(d) None of these

Show Answer Answer: a

10. $\quad\left|\begin{array}{ccc}\mathrm{bc} & \mathrm{ca} & \mathrm{ab} \\ \mathrm{p} & \mathrm{q} & \mathrm{r} \\ 1 & 1 & 1\end{array}\right|=$…………….where $\mathrm{a}, \mathrm{b}, \mathrm{c} \text { are respectively the } \mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}, \mathrm{r}^{\text {th }}$ terms of an H.P.

(a) 0

(b) 1

(c) -1

(d) None of these

Show Answer Answer: a

11. Suppose $f(\mathrm{x})$ is a function satisfying the following conditions :

(i) $f(0)=2, f(1)=1$

(ii) fhas minimum at $x=5 / 2$ and

(iii) for all $\mathrm{x}, f^{1}(\mathrm{x})=\left|\begin{array}{ccc}2 \mathrm{ax} & 2 \mathrm{ax}-1 & 2 \mathrm{ax}+\mathrm{b}+1 \\ \mathrm{~b} & \mathrm{~b}-1 & -1 \\ 2(\mathrm{ax}+\mathrm{b}) & 2 \mathrm{ax}+2 \mathrm{~b}+1 & 2 \mathrm{ax}+\mathrm{b}\end{array}\right|$ where $\mathrm{a}, \mathrm{b}$ are constants, then $f(\mathrm{x})=$

(a) 0

(b) constant $\forall x$

(c) $\dfrac{1}{4}\left(x^{2}-5 x+2\right)$

(d) None of these

Show Answer Answer: d

12. Let $\Delta=\left|\begin{array}{ccc}-b c & b^{2}+b c & c^{2}+b c \\ a^{2}+a c & -a c & c^{2}+a c \\ a^{2}+a b & b^{2}+a b & -a b\end{array}\right|$ and the equation $\mathrm{px}^{3}+\mathrm{qx}^{2}+r x+s=0$ has roots $a, b, c$ where $a, b, c \in R^{+}$

(i) The value of $\Delta$ is

(a) $\leq \dfrac{9 \mathrm{r}^{2}}{\mathrm{p}^{2}}$

(b) $\geq \dfrac{27 \mathrm{~s}^{2}}{\mathrm{p}^{2}}$

(c) $\leq \dfrac{27 \mathrm{~s}^{3}}{\mathrm{p}^{3}}$

(d) None of these

(ii) The value of $\Delta$ is

(a) $\dfrac{\mathrm{r}^{2}}{\mathrm{p}^{2}}$

(b) $\dfrac{\mathrm{r}^{3}}{\mathrm{p}^{3}}$

(c) $\dfrac{-\mathrm{s}}{\mathrm{p}}$

(d) None of these

(iii) If $\Delta=27$ and $a^{2}+b^{2}+c^{2}=2$, then

(a) $3 p+2 q=0$

(c) $3 \mathrm{p}+\mathrm{q}=0$

(b) $4 p+3 q=0$

(d) None of these

Show Answer Answer: (i) b (ii) b (iii) c

13. If $\mathrm{p} \lambda^{4}+\mathrm{q} \lambda^{3}+\mathrm{r} \lambda^{2}+\mathrm{s} \lambda+\mathrm{t}=\left|\begin{array}{ccc}\lambda^{2}+3 \lambda & \lambda-1 & \lambda+3 \\ \lambda^{2}+1 & 2-\lambda & \lambda-3 \\ \lambda^{2}-3 & \lambda+4 & 3 \lambda\end{array}\right|$, then $\mathrm{p}=$

(a) -5

(b) -4

(c) -3

(d) -2

Show Answer Answer: b

14.* If $g(x)=\left|\begin{array}{lll}a^{-x} & e^{x \log _{c} a} & x^{2} \\ a^{-3 x} & e^{3 \log _{c} a} & x^{4} \\ a^{-5 x} & e^{5^{x \log _{c} a}} & 1\end{array}\right|$, then

(a) graph of $\mathrm{g}(\mathrm{x})$ is symmetric about origin

(b) graph of $\mathrm{g}(\mathrm{x})$ is symmetric about $\mathrm{Y}$ axis

(c) $\left(\dfrac{\mathrm{d}^{4} \mathrm{~g}(\mathrm{x})}{\mathrm{dx}^{4}}\right) _{\mathrm{x}=0}=0$

(d) $f(\mathrm{x})=\mathrm{g}(\mathrm{x}) \log _{\mathrm{e}}\left(\dfrac{\mathrm{a}-\mathrm{x}}{\mathrm{a}+\mathrm{x}}\right)$ is an odd function

Show Answer Answer: a, c

15.* If $f(\alpha, \beta)=\left|\begin{array}{ccc}\cos \alpha & -\sin \alpha & 1 \\ \sin \alpha & \cos \alpha & 1 \\ \cos (\alpha+\beta) & -\sin (\alpha+\beta) & 1\end{array}\right|$ then

(a) $f(300,200)=f(400,200)$

(c) $f(100,200)=f(200,200)$

(b) $f(200,400)=f(200,600)$

(d) None of these

Show Answer Answer: a,c


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ