Matrices And Determinants - Properties and Evaluation of Determinants (Lecture-02)

Some useful results

(i) $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2} \\ 1 & \mathrm{c} & \mathrm{c}^{2}\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$

(ii) $\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2} \\ \mathrm{bc} & \mathrm{ca} & \mathrm{ab}\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2} \\ \mathrm{a}^{3} & \mathrm{~b}^{3} & \mathrm{c}^{3}\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})$

(iii) $\left|\begin{array}{lll}\mathrm{a} & \mathrm{bc} & \mathrm{abc} \\ \mathrm{b} & \mathrm{ca} & \mathrm{abc} \\ \mathrm{c} & \mathrm{ab} & \mathrm{abc}\end{array}\right|=\left|\begin{array}{lll}\mathrm{a} & \mathrm{a}^{2} & \mathrm{a}^{3} \\ \mathrm{~b} & \mathrm{~b}^{2} & \mathrm{~b}^{3} \\ \mathrm{c} & \mathrm{c}^{2} & \mathrm{c}^{3}\end{array}\right|=\mathrm{abc}(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$

(iv) $\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}^{3} & \mathrm{~b}^{3} & \mathrm{c}^{3}\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c})$

(v) $\left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|=-(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)=-\left(a^3+b^3+c^3-3 a b c\right)$

SOLVED EXAMPLES

1. If $\Delta _{\mathrm{r}}=\left|\begin{array}{ccc}2 \mathrm{r}-1 & { }^{\mathrm{m}} \mathrm{C} _{\mathrm{r}} & 1 \\ \mathrm{~m}^{2}-1 & 2^{\mathrm{m}} & \mathrm{m}+1 \\ \sin ^{2}\left(\mathrm{~m}^{2}\right) & \sin ^{2} \mathrm{~m} & \sin ^{2}(\mathrm{~m}+1)\end{array}\right|$, then the value of $\sum\limits _{\mathrm{r}=0}^{\mathrm{m}} \Delta _{\mathrm{r}}$

(a) 0

(b) 1

(c) $\mathrm{m}^{2}-1$

(d) $2^{\mathrm{m}}$

Show Answer

Solution:

$\sum\limits _{r=0}^{m} \Delta _{r}=\left|\begin{array}{ccc} \sum\limits _{r=0}^{m}(2 r-1) & \sum\limits _{r=0}^{m}{ }^{m} C _{r} & \sum\limits _{r=0}^{m} 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2}\left(m^{2}\right) & \sin ^{2} m & \sin ^{2}(m+1) \end{array}\right|$

Adding the first row we get

$\begin{aligned} & \sum\limits _{\mathrm{r}=0}^{\mathrm{m}} \Delta _{\mathrm{r}}=\left|\begin{array}{ccc} -1+(1+3+5+\ldots . .+2 \mathrm{~m}-1) & { }^{\mathrm{m}} \mathrm{C} _{0}+{ }^{\mathrm{m}} \mathrm{C} _{1}+\ldots .+{ }^{\mathrm{m}} \mathrm{C} _{\mathrm{m}} & 1+1+1 \ldots \mathrm{m}+1 \text { times } \\ \mathrm{m}^{2}-1 & 2^{\mathrm{m}} & \mathrm{m}+1 \\ \sin ^{2}\left(\mathrm{~m}^{2}\right) & \sin ^{2} \mathrm{~m} & \sin ^{2}(\mathrm{~m}+1) \end{array}\right| \\ & =\left|\begin{array}{ccc} \mathrm{m}^{2}-1 & 2^{\mathrm{m}} & \mathrm{m}+1 \\ \mathrm{~m}^{2}-1 & 2^{\mathrm{m}} & \mathrm{m}+1 \\ \sin ^{2}\left(\mathrm{~m}^{2}\right) & \sin ^{2} \mathrm{~m} & \sin ^{2}(\mathrm{~m}+1) \end{array}\right|=0 \end{aligned}$

Answer: (a)

2. If $f(\mathrm{x}), \mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ are polynomials of degree 2, then $\phi(\mathrm{x})=\left|\begin{array}{ccc}f(\mathrm{x}) & \mathrm{g}(\mathrm{x}) & \mathrm{h}(\mathrm{x}) \\ f^{\prime}(\mathrm{x}) & \mathrm{g}^{\prime}(\mathrm{x}) & \mathrm{h}^{\prime}(\mathrm{x}) \\ f^{\prime \prime}(\mathrm{x}) & \mathrm{g}^{\prime \prime}(\mathrm{x}) & \mathrm{h}^{\prime \prime}(\mathrm{x})\end{array}\right|$ is a polynomial of degree

(a) 2

(b) 3

(c) 4

(d) None of these

Show Answer

Solution

$\phi^{\prime}(\mathrm{x})=\left|\begin{array}{ccc}f^{\prime}(\mathrm{x}) & \mathrm{g}^{\prime}(\mathrm{x}) & \mathrm{h}^{\prime}(\mathrm{x}) \\ f^{\prime}(\mathrm{x}) & \mathrm{g}^{\prime}(\mathrm{x}) & \mathrm{h}^{\prime}(\mathrm{x}) \\ f^{\prime \prime}(\mathrm{x}) & \mathrm{g}^{\prime \prime}(\mathrm{x}) & \mathrm{h}^{\prime \prime}(\mathrm{x})\end{array}\right|+\left|\begin{array}{ccc}f(\mathrm{x}) & \mathrm{g}(\mathrm{x}) & \mathrm{h}(\mathrm{x}) \\ f^{\prime \prime}(\mathrm{x}) & \mathrm{g}^{\prime \prime}(\mathrm{x}) & \mathrm{h}^{\prime \prime}(\mathrm{x}) \\ f^{\prime \prime}(\mathrm{x}) & \mathrm{g}^{\prime \prime}(\mathrm{x}) & \mathrm{h}^{\prime \prime}(\mathrm{x})\end{array}\right|+\left|\begin{array}{ccc}f(\mathrm{x}) & \mathrm{g}(\mathrm{x}) & \mathrm{h}(\mathrm{x}) \\ f^{\prime}(\mathrm{x}) & \mathrm{g}^{\prime}(\mathrm{x}) & \mathrm{h}^{\prime}(\mathrm{x}) \\ f^{\prime \prime}(\mathrm{x}) & \mathrm{g}^{\prime \prime}(\mathrm{x}) & \mathrm{h}^{\prime \prime}(\mathrm{x})\end{array}\right|=0+0+0$

$\left(\because f(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})\right.$ are polynomials of degree $3, f^{\prime \prime \prime}(\mathrm{x}), \mathrm{g}^{\prime \prime \prime}(\mathrm{x})$ and $\mathrm{h}^{\prime \prime \prime}(\mathrm{x})=0$ )

$\Rightarrow \phi^{1}(\mathrm{x})=0$

$\therefore \phi(\mathrm{x})$ is a constant.

Answer: (d)

3. If $\alpha, \beta, \gamma$ are roots of $x^{3}+a^{2}+b=0$, then the value of $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$ is

(a) $-\mathrm{a}^{3}$

(b) $a^{3}-3 b$

(c) $\mathrm{a}^{3}$

(d) None of these

Show Answer

Solution:

$\alpha+\beta+\gamma=-a, \alpha \beta+\beta \gamma+\gamma \alpha=0, \alpha \beta \gamma=-b$.

It can be shown that

$\left|\begin{array}{lll} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{array}\right|=-(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)$

$\begin{aligned} & =-(\alpha+\beta+\gamma)\left((\alpha+\beta+\gamma)^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right) \\ & =-(-a)\left((-a)^{2}-3 \times 0\right)=a^{3} \end{aligned}$

Answer: (c)

4. If $f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & x(x+1) \\ 3 x(x-1) & x(x-1)(x-2) & x(x+1)(x-1)\end{array}\right|$, then $f(100)$ is equal to

(a) 0

(b) 1

(c) 100

(d) -100

Show Answer

Solution:

$\mathrm{C} _{3} \rightarrow \mathrm{C} _{3}-\mathrm{C} _{2} \operatorname{gives} \mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}1 & \mathrm{x} & 1 \\ 2 \mathrm{x} & \mathrm{x}(\mathrm{x}-1) & 2 \mathrm{x} \\ 3 \mathrm{x}(\mathrm{x}-1) & \mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2) & 3 \mathrm{x}(\mathrm{x}-1)\end{array}\right|$

$\therefore f(\mathrm{x})=0\left(\because \mathrm{C} _{1} \& \mathrm{C} _{3}\right.$ are identical $)$

$\Rightarrow f(100)=0$

5. If $\mathrm{a} _{\mathrm{i}}{ }^{2}+\mathrm{b} _{\mathrm{i}}{ }^{2}+\mathrm{c} _{\mathrm{i}}{ }^{2}=1 ; \mathrm{i}=1,2,3$ and $\mathrm{a} _{\mathrm{i}} \mathrm{a} _{\mathrm{j}}+\mathrm{b} _{\mathrm{i}} \mathrm{b} _{\mathrm{j}}+\mathrm{c} _{\mathrm{i}} \mathrm{c} _{\mathrm{j}}=0$, then the value of determinant

$\left|\begin{array}{lll}\mathrm{a} _{1} & \mathrm{a} _{2} & \mathrm{a} _{3} \\ \mathrm{~b} _{1} & \mathrm{~b} _{2} & \mathrm{~b} _{3} \\ \mathrm{c} _{1} & \mathrm{c} _{2} & \mathrm{c} _{3}\end{array}\right|$ is

(a) $\dfrac{1}{2}$

(b) 0

(c) 2

(d) 1

Show Answer

Solution:

$\left|\begin{array}{lll} \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2 \\ \mathrm{a}_3 & \mathrm{~b}_3 & \mathrm{c}_3 \end{array}\right|^2=\left|\begin{array}{lll} \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2 \\ \mathrm{a}_3 & \mathrm{~b}_3 & \mathrm{c}_3 \end{array}\right|\left|\begin{array}{lll} \mathrm{a}_1 & \mathrm{~b}_1 & \mathrm{c}_1 \\ \mathrm{a}_2 & \mathrm{~b}_2 & \mathrm{c}_2 \\ \mathrm{a}_3 & \mathrm{~b}_3 & \mathrm{c}_3 \end{array}\right|$

$=\left|\begin{array}{ccc}\sum \mathrm{a} _{1}{ }^{2} & \sum \mathrm{a} _{1} \mathrm{a} _{2} & \sum \mathrm{a} _{1} \mathrm{a} _{3} \\ \sum \mathrm{a} _{1} \mathrm{a} _{2} & \sum \mathrm{a} _{2}{ }^{2} & \sum \mathrm{a} _{2} \mathrm{a} _{3} \\ \sum \mathrm{a} _{1} \mathrm{a} _{3} & \sum \mathrm{a} _{2} \mathrm{a} _{3} & \sum \mathrm{a} _{3}{ }^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=1$

Answer: (d)

6. If $0 \leq[\mathrm{x}]<2,-1 \leq[\mathrm{y}]<1,1 \leq[\mathrm{z}]<3$ ([.] denotes the greatest integer function), then the maximum value of

$\Delta=\left|\begin{array}{ccc} {[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1} \end{array}\right| \text { is }$

(a) 2

(b) 6

(c) 4

(d) None of these

Show Answer

Solution:

Solving the determinant we get

$\Delta=1+[\mathrm{x}]+[\mathrm{y}]+[\mathrm{z}]$

$=1+1+0+2=4(\because$ maximum values of $[\mathrm{x}],[\mathrm{y}]$ and $[\mathrm{z}]$ are 1,0 and 2 respectively $)$

Answer: (c)

7. Let $\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|=a x^{4}+b x^{3}+c x^{2}+d x+e$ then, $5 a+4 b+3 c+2 d+e$ is equal to

(a) 0

(b) -16

(c) 16

(d) None of these

Show Answer

Solution:

$\mathrm{R} _{3} \rightarrow \mathrm{R} _{3}-\mathrm{R} _{2}$ gives

$\Delta=\left|\begin{array}{ccc}\mathrm{x} & 2 & \mathrm{x} \\ \mathrm{x}^{2} & \mathrm{x} & 6 \\ \mathrm{x}-\mathrm{x}^{2} & 0 & 0\end{array}\right|=12-\mathrm{x}^{3}-12 \mathrm{x}^{2}+\mathrm{x}^{4}$

$\therefore \mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=-12, \mathrm{~d}=12, \mathrm{e}=0$

Put the values to get $5 a+4 b+3 c+2 d+e=-11$

Answer: (d)

EXERCISE

1. If $\Delta(x)=\left|\begin{array}{ccc}\mathrm{e}^{\mathrm{x}} & \sin 2 \mathrm{x} & \tan \left(\mathrm{x}^{2}\right) \\ \log _{\mathrm{e}}(1+\mathrm{x}) & \cos \mathrm{x} & \sin \mathrm{x} \\ \cos \left(\mathrm{x}^{2}\right) & \mathrm{e}^{\mathrm{x}}-1 & \sin \left(\mathrm{x}^{2}\right)\end{array}\right|=\mathrm{A}+\mathrm{Bx}+\mathrm{Cx}^{2}+\ldots \ldots \ldots \ldots \ldots$. then $\mathrm{B}=$

(a) 0

(b) 1

(c) 2

(d) 4

Show Answer Answer: a

2. Let $f(\mathrm{x})=\left|\begin{array}{ccc}\mathrm{x}+\mathrm{a} & \mathrm{x}+\mathrm{b} & \mathrm{x}+\mathrm{a}-\mathrm{c} \\ \mathrm{x}+\mathrm{b} & \mathrm{x}+\mathrm{c} & \mathrm{x}-1 \\ \mathrm{x}+\mathrm{c} & \mathrm{x}+\mathrm{d} & \mathrm{x}-\mathrm{b}+\mathrm{d}\end{array}\right| \& \int _{0}^{2} f(\mathrm{x}) \mathrm{dx}=-16$

Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in A.P., then the common difference of the A.P is

(a) $\pm 1$

(b) $\pm 2$

(c) $\pm 3$

(d) $\pm 4$

Show Answer Answer: b

3. If $\left|\begin{array}{ccc}1 & 1 & 1 \\ { }^{m} C _{1} & { }^{\mathrm{m}+3} \mathrm{C} _{1} & { }^{\mathrm{m}+6} \mathrm{C} _{1} \\ { }^{\mathrm{m}} \mathrm{C} _{2} & { }^{\mathrm{m}+3} \mathrm{C} _{2} & { }^{\mathrm{m}+6} \mathrm{C} _{2}\end{array}\right|=2^{\alpha} 3^{\beta} 5^{\gamma}$ then $\alpha+\beta+\gamma$ is equal to

(a) 3

(b) 5

(c) 7

(d) 0

Show Answer Answer: a

4. Match the following:

Column I Column II
(a) (a) If $\left|\begin{array}{ccc}x & x+y & x+y+z \\ 2 x & 3 x+2 y & 4 x+3 y+2 z \\ 3 x & 6 x+3 y & 10 x+6 y+3 z\end{array}\right|=343$ then $x=$ (p) 2
(b) If $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=-2$ and (q) 4
$f(x)=\left|\begin{array}{lll} \left(1+a^2 x\right) & \left(1+b^2\right) x & \left(1+c^2\right) x \\ \left(1+a^2\right) x & \left(1+b^2 x\right) & \left(1+c^2\right) x \\ \left(1+a^2\right) x & \left(1+b^2\right) x & \left(1+c^2 x\right) \end{array}\right|$
then $f(\mathrm{x})$ is a polynomial of degree
(c) If $\left|\begin{array}{ccc}\dfrac{a^{2}+b^{2}}{c} & c & c \\ a & \dfrac{b^{2}+c^{2}}{a} & a \\ b & b & \dfrac{c^{2}+a^{2}}{b}\end{array}\right|=k a b c$ then $\mathrm{k}=$ (r) 0
(d) If A, B, C are the angles of triangle then $\left|\begin{array}{ccc}\sin 2 A & \sin C & \sin B \\ \sin C & \sin 2 B & \sin A \\ \sin B & \sin A & \sin 2 C\end{array}\right|=$ (s) 7
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{p} ; \mathrm{c} \rightarrow \mathrm{q} ; \mathrm{d} \rightarrow \mathrm{r}$

5. Let $\mathrm{k}$ be a positive real number and let

$A=\left|\begin{array}{ccc}2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1\end{array}\right| \quad$ and $\quad B=\left|\begin{array}{ccc}0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0\end{array}\right|$. If

$\operatorname{det}(\operatorname{adj} \mathrm{A})+\operatorname{det}(\operatorname{adj} B)=10^{6}$, then $[\mathrm{k}]=$

(a) 4

(b) 5

(c) 6

(d) None of these

Show Answer Answer: a

6. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the angles of a triangle, then $\left|\begin{array}{ccc}-1+\cos \mathrm{B} & \cos \mathrm{C}+\cos \mathrm{B} & \cos \mathrm{B} \\ \cos \mathrm{C}+\cos \mathrm{A} & -1+\cos \mathrm{A} & \cos \mathrm{A} \\ -1+\cos \mathrm{B} & -1+\cos \mathrm{A} & -1\end{array}\right|=$

(a) -1

(b) 0

(c) 1

(d) 2

Show Answer Answer: b

7. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are complex numbers, then $\Delta=\left|\begin{array}{ccc}0 & -\mathrm{y} & -\mathrm{z} \\ \overline{\mathrm{y}} & 0 & -\mathrm{x} \\ \overline{\mathrm{z}} & \overline{\mathrm{x}} & 0\end{array}\right|$ is

(a) purely real

(b) purely imaginary

(c) complex

(d) 0

Show Answer Answer: b

8. If $\left|\begin{array}{ccc}1+\mathrm{a} & 1 & 1 \\ 1+\mathrm{b} & 1+2 \mathrm{~b} & 1 \\ 1+\mathrm{c} & 1+\mathrm{c} & 1+3 \mathrm{c}\end{array}\right|=0$ where $\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0$, then $\mathrm{a}^{-1}+\mathrm{b}^{-1}+\mathrm{c}^{-1}=$

(a) 4

(b) -3

(c) -2

(d) -1

Show Answer Answer: b

9. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ and the vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right),\left(1, c, c^{2}\right)$ are noncoplanar, then $a b c=$

(a) 2

(b) -1

(c) 1

(d) 0

Show Answer Answer: b

10. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be real numbers with $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$. Then the equation

$\left|\begin{array}{ccc} a x-b y-c & b x+a y & c x+a \\ b x+a y & -a x+b y-c & c y+b \\ c x+a & c y+b & -a x-b y+c \end{array}\right|=0 \text { represents }$

(a) a parabola

(b) pair oflines

(c) a straight line

(d) circle.

Show Answer Answer: c

11. Let $\Delta \neq 0$ and $\Delta^{\mathrm{c}}$ denotes the determinants of cofactors, then $\Delta^{\mathrm{c}}=\Delta^{\mathrm{n}-1}$, where $\mathrm{n}(>0)$ is the order of $\Delta$. On the basis of above information, answer the following questions :-

(i) If $a, b, c$ are the roots of $x^{3}-p^{2}+r=0$ then

$\left|\begin{array}{lll} b c-a^{2} & c a-b^{2} & a b-c^{2} \\ c a-b^{2} & a b-c^{2} & b c-a^{2} \\ a b-c^{2} & b c-a^{2} & c a-b^{2} \end{array}\right| \text { is }$

(a) $\mathrm{p}^{2}$

(b) $\mathrm{p}^{4}$

(c) $\mathrm{p}^{6}$

(d) $\mathrm{p}^{9}$

(ii) If $\ell _{1}, \mathrm{~m} _{1}, \mathrm{n} _{1} ; \ell _{2}, \mathrm{~m} _{2}, \mathrm{n} _{2} ; \ell _{3}, \mathrm{~m} _{3}, \mathrm{n} _{3}$;are real quantities satisfying the six relations : $\ell _{1}{ }^{2}+\mathrm{m} _{1}{ }^{2}+\mathrm{n} _{1}{ }^{2}$ $=\ell _{2}{ }^{2}+\mathrm{m} _{2}{ } _{2}+\mathrm{n} _{2}{ } _{2}=\ell^{3}{ } _{2}+\mathrm{m} _{3}{ }^{2}+\mathrm{n} _{3}{ }^{2}=1 ; \ell _{1} \ell _{2}+\mathrm{m} _{1} \mathrm{~m} _{2}+\mathrm{n} _{1} \mathrm{n} _{2}=\ell _{2} \ell _{3}+\mathrm{m} _{2} \mathrm{~m} _{3}+\mathrm{n} _{2} \mathrm{n} _{3}=$ $\ell _{3} \ell _{1}+\mathrm{m} _{3} \mathrm{~m} _{1}+\mathrm{n} _{3} \mathrm{n} _{1}=0$, then

$\left|\begin{array}{lll}\ell _{1} & \mathrm{~m} _{1} & \mathrm{n} _{1} \\ \ell _{2} & \mathrm{~m} _{2} & \mathrm{n} _{2} \\ \ell _{3} & \mathrm{~m} _{3} & \mathrm{n} _{3}\end{array}\right|$ is

(a) 0

(b) $\pm 1$

(c) $\pm 2$

(d) $\pm 3$

(iii) If a, b, c are the roots of $\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}+7=0$, then $\left|\begin{array}{ccc}2 \mathrm{bc}-\mathrm{a}^{2} & \mathrm{c}^{2} & \mathrm{~b}^{2} \\ \mathrm{c}^{2} & 2 \mathrm{ac}-\mathrm{b}^{2} & \mathrm{a}^{2} \\ \mathrm{~b}^{2} & \mathrm{a}^{2} & 2 \mathrm{ab}-\mathrm{c}^{2}\end{array}\right|$ is

(a) 9

(b) 27

(c) 8

(d) 0

(iv) If $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=\lambda^{2}$ then the value of

$\left|\begin{array}{ccc} a^{2}+\lambda^{2} & a b+c \lambda & c a-b \lambda \\ a b-c \lambda & b^{2}+\lambda^{2} & b c+a \lambda \\ a c+b \lambda & b c-a \lambda & c^{2}+\lambda^{2} \end{array}\right| \times\left|\begin{array}{ccc} \lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda \end{array}\right| \text { is }$

(a) $8 \lambda^{6}$

(b) $27 \lambda^{9}$

(c) $8 \lambda^{9}$

(d) $27 \lambda^{6}$

(v) Suppose $a, b, c \in R, a+b+c>0, A=b c-a^{2}, B=c a-b^{2} \& C=a b-c^{2}$ and

$\left|\begin{array}{lll} \mathrm{A} & \mathrm{B} & \mathrm{C} \\ \mathrm{B} & \mathrm{C} & \mathrm{A} \\ \mathrm{C} & \mathrm{A} & \mathrm{B} \end{array}\right|=49 \text {, then }\left|\begin{array}{lll} \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b} \end{array}\right|=$

(a) -7

(b) 7

(c) -2401

(d) 2401

Show Answer Answer: (i) c (ii) b (iii) d (iv) c (v) b

12. The value of the determinant $\left|\begin{array}{ccc}1 & \mathrm{e}^{\mathrm{i} \pi / 3} & \mathrm{e}^{\mathrm{i} \pi / 4} \\ \mathrm{e}^{-\mathrm{i} \pi / 3} & 1 & \mathrm{e}^{\mathrm{i} 2 \pi / 3} \\ \mathrm{e}^{-i \pi / 4} & \mathrm{e}^{-\mathrm{i} 2 \pi / 3} & 1\end{array}\right|$ is

(a) $2+\sqrt{2}$

(b) $-(2+\sqrt{2})$

(c) $-2+\sqrt{3}$

(d) $2-\sqrt{3}$

Show Answer Answer: b

13.* If $\left(\mathrm{x} _{1}-\mathrm{x} _{2}\right)^{2}+\left(\mathrm{y} _{1}-\mathrm{y} _{2}\right)^{2}=\mathrm{a}^{2}$

$\left(\mathrm{x} _{2}-\mathrm{x} _{3}\right)^{2}+\left(\mathrm{y} _{2}-\mathrm{y} _{3}\right)^{2}=\mathrm{b}^{2}$

$\left(\mathrm{x} _{3}-\mathrm{x} _{1}\right)^{2}+\left(\mathrm{y} _{3}-\mathrm{y} _{1}\right)^{2}=\mathrm{c}^{2}$ and

$4\left|\begin{array}{lll}x _{1} & y _{1} & 1 \\ x _{2} & y _{2} & 1 \\ x _{3} & y _{3} & 1\end{array}\right|=\lambda\left\{\lambda^{3}-\left(\lambda _{1}+\lambda _{2}+\lambda _{3}\right) \lambda^{2}+\left(\lambda _{1} \lambda _{2}+\lambda _{2} \lambda _{3}+\lambda _{3} \lambda _{1}\right) \lambda-\lambda _{1} \lambda _{2} \lambda _{3}\right\}$ then

(a) $\lambda \geq \dfrac{3}{2}\left(\lambda _{1} \lambda _{2} \lambda _{3}\right)^{1 / 3}$

(b) $\lambda _{1} \lambda _{2} \lambda _{3}=8 \mathrm{abc}$

(c) $\sum \lambda _{1} \lambda _{2}=4 \sum \mathrm{ab}$

(d) $2 \lambda=\lambda _{1}+\lambda _{2}+\lambda _{3}$

Show Answer Answer: a,b,c,d

14. If $\quad A _{r}=\left|\begin{array}{cc}r & r-1 \\ r-1 & r\end{array}\right|$, where $r$ is a natural number, then the value of $\sqrt{\sum\limits _{r=1}^{2008} A _{r}}$ is………….

(a) 2008

(c) 2007

(b) 0

(d) None of these

A program to give wings to girl students

Show Answer Answer: a

15.* If $f(\mathrm{x})=\left|\begin{array}{ccc}\mathrm{x}-3 & 2 \mathrm{x}^{2}-18 & 3 \mathrm{x}^{3}-81 \\ \mathrm{x}-5 & 2 \mathrm{x}^{2}-50 & 4 \mathrm{x}^{3}-500 \\ 1 & 2 & 3\end{array}\right|$, then $f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)=$

(a) $f(3)$

(c) 2928

(b) 0

(d) None of these

Show Answer Answer: a,b


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ