Matrices And Determinants - Types, Adjoint and Inverse of a Matrix (Lecture-03)

Matrices:

A rectangular arrangement of numbers is rows & columns is called a matrix.

A matrix of order mxn contains mn elements. A matrix of order mxn is of the form

$A=\left[\begin{array}{cccc} a _{11} & a _{12} & \ldots \ldots \ldots & a _{1 n} \\ a _{21} & a _{22} & \ldots \ldots \ldots & a _{2 n} \\ \vdots & & & \\ a _{m 1} & a _{m 2} & \ldots \ldots . . & a _{m n} \end{array}\right]=\left[a _{i j}\right] _{m \times n}$

If $m=1$, the matrix is a row matrix. If $n=1$ the matrix is a column matrix.

Equality: If $A \& B$ are of same order, then $A=B$ if $a _{i j}=b _{i j} \forall i \& j$

Types of matrices:

  • Null (zero) matrix
  • Square matrix
  • Diagonal matrix

$\hspace {0.7 cm}\left(\text { If } \mathrm{A}=\operatorname{diag}\left(\mathrm{d} _{1}, \mathrm{~d} _{2} \ldots \ldots . \mathrm{d} _{\mathrm{n}}\right) \text {, then } \mathrm{A}^{\mathrm{n}}=\left(\mathrm{d} _{1}^{\mathrm{n}}, \mathrm{d} _{2}^{\mathrm{n}} \ldots \ldots . \mathrm{d} _{\mathrm{n}}^{\mathrm{n}}\right)\right)$

  • Identity matrix
  • Triangular matrix
  • (Determinant of upper triangular or lower triangular matrix is the product of principal diagonal elements). Also minimum number of zeros in a triangular matrix is given by $\dfrac{\mathrm{n}(\mathrm{n}-1)}{2}$ where ’ $n$ ’ is the order of matrix.

Properties of Matrix Multiplication

i. $\mathrm{AB} \neq \mathrm{BA}$

ii. $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$

iii. $A(B+C)=A B+A C$

iv. $\mathrm{AI}=\mathrm{A}=\mathrm{IA}$

v. $\mathrm{AB}=\mathrm{AC}$ need not imply $\mathrm{B}=\mathrm{C}$

vi. $\mathrm{AB}=0$ need not imply $\mathrm{A}=0$ or $\mathrm{B}=0$

vii. $\mathrm{I}^{2}=\mathrm{I}^{3}$ $\mathrm{I}^{\mathrm{m}}=\mathrm{I}(\mathrm{m} \in \mathrm{z})$

Trace (spur) a Matrix

Sum of diagonal elements of a square matrix is called the trace of matrix A.

i.e. $\operatorname{tr} A=\sum\limits _{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a} _{\mathrm{ii}}=\mathrm{a} _{11}+\mathrm{a} _{22}+\ldots \ldots . .+\mathrm{a} _{\mathrm{nn}}$

Trace of a skew symmetric matrix is zero.

Properties:

Let $A=\left[a _{i j}\right] _{\text {nxn }}, B=\left[b _{i j}\right] _{\text {nxn }} \& \lambda$ is a scalar

  • $\operatorname{tr}(\mathrm{A} \pm \mathrm{B})=\operatorname{tr}(\mathrm{A}) \pm \operatorname{tr}(\mathrm{B})$

  • $\operatorname{tr}(A B)=\operatorname{tr}(B A)(\operatorname{tr}(A B) \neq \operatorname{tr}(A) \cdot \operatorname{tr}(B))$

  • $\operatorname{tr}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{tr}(\mathrm{A})$

  • $\operatorname{tr}(\lambda \mathrm{A})=\lambda \operatorname{tr}(\mathrm{A})$

  • $\operatorname{tr}\left(\mathrm{I} _{\mathrm{n}}\right)=\mathrm{n}$

Transpose of a Matrix

the matrix obtained by interchanging the rows and columns of the given matrix a is called transpose of A.

If $A$ is of order mxn, then $\mathrm{A}^{\mathrm{T}}$ is of order nxm.

Properties:
  • $\left(A^{T}\right)^{T}=A$
  • $(A \pm B)^{T}=A^{T} \pm B^{T}$
  • $(\lambda \mathrm{A})^{\mathrm{T}}=\lambda \mathrm{A}^{\mathrm{T}}$, where $\lambda$ is a scalar
  • $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$ (reversal law of transposes) (if $\mathrm{A} \& \mathrm{~B}$ are conformable for multiplication) Also, $(\mathrm{ABC})^{\mathrm{T}}=\mathrm{C}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$ etc.
  • $\mathrm{I}^{\mathrm{T}}=\mathrm{I}$

Conjugate of a Matrix

Conjugate of a matrix A is obtained by replacing the elements of A by their corresponding complex conjugates. It is denoted by $\bar{A}$.

Properties:
  • $(\overline{\mathrm{A}})=\mathrm{A}$

  • $(\overline{\mathrm{A}+\mathrm{B}})=\overline{\mathrm{A}}+\overline{\mathrm{B}}$

  • $(\overline{\mathrm{AB}})=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$

  • $(\overline{\mathrm{kA}})=\overline{\mathrm{k}} \cdot \overline{\mathrm{A}}$

  • $\left(\overline{\mathrm{A}^{\mathrm{n}}}\right)=(\overline{\mathrm{A}})^{\mathrm{n}}$

Tranjugate (Transposed conjugate of a Matrix)

Transposed conjugate is obtained by interchanging the rows and columns of the matrix obtained by replacing the elements of A by their corresponding complex conjugate. It is denoted by $\mathrm{A}^{*}$.

Properties:
  • $\left(\mathrm{A}^{\ast}\right)^{*}=\mathrm{A}$
  • $(A+B)^{\ast}=A^{\ast}+B^{\ast}$
  • $(\mathrm{AB})^{\ast}=\mathrm{B}^{\ast} \mathrm{~A}^{\ast}$
  • $(\mathrm{kA})^{\ast}=\overline{\mathrm{k}} \mathrm{A}^{\ast}$
  • $\left(A^{n}\right)^{\ast}=\left(A^{\ast}\right)^{n}$

Symmetric and skew symmetric matrices:

A square matrix $\mathrm{A}$ is called symmetric if $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$ and skew symmetric if $\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$. All principal diagonal elements of a skew-sym metric matrix are zero.

Properties:
  • If $\mathrm{A}$ is a square matrix, then $\mathrm{A}+\mathrm{A}^{\mathrm{T}}, \mathrm{AA}^{\mathrm{T}}, \mathrm{A}^{\mathrm{T}} \mathrm{A}$ are symmetric matrices, while $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is skew-symmetric matrix.
  • If $\mathrm{A}$ is symmetric matrix, then - $\mathrm{A}, \mathrm{KA}, \mathrm{A}^{\mathrm{T}}, \mathrm{A}^{\mathrm{n}}, \mathrm{A}^{-1}, \mathrm{~B}^{\mathrm{T}} \mathrm{AB}$ are also symmetric matrices where $B$ is a square matrix of same order that of $A$.
  • If $A$ is a skew symmetric matrix, then $A^{2 n}$ is symmetric where as $A^{2 n+1}$ and $B^{T} A B$ are skew symmetric ( $n \in N \& B$ is a square matrix of same order that of $A$ )
  • If $A \& B$ are two symmetric matrices, then $A \pm B, A B+B A$ and $A B-B A$ are skew symmetric.
  • If $\mathrm{A} \& \mathrm{~B}$ are two skew symmetric matrices, then $\mathrm{A} \pm \mathrm{B}, \mathrm{AB}-\mathrm{BA}$ are skew symmetric and $\mathrm{AB}+\mathrm{BA}$ is symmetric.
  • Every square matrix can be uniquely expressed as sum of a symmetric and a skew symmetric matrix.

$\hspace {0.7 cm}\mathrm{A}=\dfrac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)+\dfrac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)=\mathrm{P}+\mathrm{Q}$. Here $\mathrm{P}$ is symmetric and $\mathrm{Q}$ is skew symmetric.

  • If $A$ is a skew symmetric matrix \& $C$ is a column matrix, then $C^{\mathrm{T}} \mathrm{AC}$ is a null matrix.

  • If $A$ is a skew symmetric matrix of odd order, then $\mathrm{A}^{-1}$ does not exists $(\because|\mathrm{A}|=0)$

  • Null matrix is both symmetric and skew symmetric

  • All elements on the principal diagonal of a skew-symmetric matrix are always zero.

Hermitian Skew-Hermitian matrix

A square matrix is said to be Hermitian if $\overline{\mathrm{A}^{\mathrm{T}}}=\mathrm{A}$ and skew-hermitian if $\overline{\mathrm{A}^{\mathrm{T}}}=-\mathrm{A}$.

Properties:

The diagonal elements of a Hermitian matrix are real where that of a skew-Hermitian matrix are either purely imaginary or zero.

  • Every square matrix (with complex elements) can be uniquely expressed as the sum of Hermitian and skew-Hermitian matrices.

$\hspace {1 cm}\mathrm{A}=\underbrace{\dfrac{1}{2}\left(\mathrm{~A}+\overline{\mathrm{A}^{\mathrm{T}}}\right)} _{\text {Hermitian }}+\underbrace{\dfrac{1}{2}\left(\mathrm{~A}-\overline{\mathrm{A}^{\mathrm{T}}}\right)} _{\text {Skew-hermitian }}$

Orthogonal matrix

  • A square matrix $A$ is called on orthogonal matrix if $\mathrm{AA}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{A}=\mathrm{I}$.
  • If $\mathrm{A}$ is orthogonal, then $|\mathrm{A}|= \pm 1$. Hence it is non-singular.
  • If $A$ is orthogonal, it is invertible with $\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{T}}$.
  • If $\mathrm{A} \& \mathrm{~B}$ area orthogonal matrices of order $\mathrm{n}$, then $\mathrm{AB}, \mathrm{BA}, \mathrm{A}^{-1}, \mathrm{~A}^{\mathrm{T}}$ are orthogonal.
  • If $A$ is orthogonal with $|A|=1$, then each element of $A$ is equal to its cofactor is $|A|$.
  • If $A$ is orthogonal with $|A|=1$, then each element of $A$ is equal to the negative of its cofactor is $|\mathrm{A}|$.
  • If $\mathrm{A} _{3 \times 3}$ is orthogonal and $\mathrm{B} _{3 \times 3}$ is a skew symmetric matrix, then $|\mathrm{AB}|=1$.

Unitary Matrix

A square matrix $A$ is called a unitary matrix. If $A \overline{A^{\mathrm{T}}}=\overline{\mathrm{A}^{\mathrm{T}}} \mathrm{A}=\mathrm{I}$.

Properties:
  • Determinant of a unitary matrix is of unit modulus.
  • If $\mathrm{A}$ is a unitary matrix, then $\mathrm{A}^{\mathrm{T}}, \overline{\mathrm{A}}, \overline{\mathrm{A}^{\mathrm{T}}}$ and $\mathrm{A}^{-1}$ are unitary.
  • Product of two unit matrices is unitary.

Idempotent matrix

A square matrix is called idempotent if $\mathrm{A}^{2}=\mathrm{A}$.

Properties:
  • If $\mathrm{A}$ is idempotent, then I-A is also idempotent.
  • If $\mathrm{A}, \mathrm{B}$ are two idempotent matrices and $\mathrm{AB}=\mathrm{BA}=0$, then $(\mathrm{A}+\mathrm{B})$ is idempotent.
  • If $\mathrm{AB}=\mathrm{A} ; \mathrm{BA}=\mathrm{B}$, then $\mathrm{A} \& \mathrm{~B}$ are idempotent matrices and $\mathrm{A}^{\mathrm{n}}+\mathrm{B}^{\mathrm{n}}=\mathrm{A}+\mathrm{B}$ where $\mathrm{n} \in \mathrm{N}$.

Periodic matrix

A square matrix $A$ is called periodic if $\mathrm{A}^{k+1}=\mathrm{A} ; \mathrm{k} \in \mathrm{Z}^{+}$. The least value of $\mathrm{k}$ is called period of A.

When $\mathrm{k}=1$, we get $\mathrm{A}^{2}=\mathrm{A}$ and it becomes an idempotent matrix.

Nilpotent Matrix

A square matrix $A$ is called Nilpotent of order $k$ if $A^{k}=0$ and $A^{k-1} \neq 0, k \in Z^{+}$. Here $k$ is called the order of the nilpotent matrix $A$.

Involutory Matrix

A square matrix $\mathrm{A}$ is called involutory if $\mathrm{A}^{2}=\mathrm{I}$.

i.e. $\mathrm{A}^{-1}=\mathrm{A}(\mathrm{A}$ is the inverse of itself)

Adjoint of a square matrix

The transpose of the matrix of cofactors $\mathrm{C}$ is called the adjoint of matrix $\mathrm{A}$ and is denoted by adj A.

Properties:

For square matrices $A \& B$ of order $n$,

  • $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I _{n}$

  • $\operatorname{adj}(\mathrm{AB})=(\operatorname{adjB})(\operatorname{adj} A)$

  • $\left(\operatorname{adj} A^{T}\right)=(\operatorname{adj} A)^{\mathrm{T}}$

  • $\left(\operatorname{adj} A^{m}\right)=(\operatorname{adj} A)^{m} ; m \in N$

  • $\operatorname{adj}(k A)=k^{n-1}(\operatorname{adj} A) ; k \in R$

  • Adjoint of a diagonal matrix is a diagonal matrix.

  • $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$

  • $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A ;|A| \neq 0$

  • $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(\mathrm{n}-1)^{2}} ;|\mathrm{A}| \neq 0$

Inverse of a matrix

For a non singular matrix A of order $\mathrm{n}, \mathrm{A}^{-1}=\dfrac{1}{|\mathrm{~A}|}(\operatorname{adj} \mathrm{A})$

Properties:
  • $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
  • $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
  • $\left(\operatorname{adj} \mathrm{A}^{-1}\right)=(\operatorname{adj} \mathrm{A})^{-1}$
  • $\left|\mathrm{A}^{-1}\right|=\dfrac{1}{|\mathrm{~A}|}=|\mathrm{A}|^{-1}$
  • If $\mathrm{A}=\operatorname{diag}\left(\mathrm{a} _{11}, \mathrm{a} _{22} \ldots . . \mathrm{a} _{\mathrm{nn}}\right)$

$\hspace {0.7 cm}\mathrm{A}^{-1}=\operatorname{diag}\left(\mathrm{a} _{11}^{-1}, \mathrm{a} _{22}^{-1}, \ldots \mathrm{a} _{\mathrm{nn}}^{-1}\right)$

  • $(\mathrm{AB})=\mathrm{B}^{-1} \mathrm{~A}^{-1}$ (reversal law)

  • $\mathrm{AB}=\mathrm{AC} \Rightarrow \mathrm{A}=\mathrm{C}$ if $|\mathrm{A}| \neq 0$.

Solved Examples

1. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then the value of $\alpha$ is

(a) $\pm 1$

(b) $\pm 2$

(c) $\pm 3$

(d) $\pm 5$

Show Answer

Solution: $|A|=\left|\begin{array}{ll}\alpha & 2 \ 2 & \alpha\end{array}\right|=\alpha^{2}-4$

Also $\left|A^{3}\right|=125 \Rightarrow|A|^{3}=125$ gives $\left(\alpha^{2}-4\right)^{3}=5^{3}$

$\Rightarrow \alpha^{2}-4=5 \Rightarrow \alpha^{2}=9 \Rightarrow \alpha^{2}= \pm 3$.

Answer: c

2. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}+\mathrm{A}^{3}+—-\infty$ equals to

(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

(b) $\left[\begin{array}{rr}-1 & -2 \\ -3 & -4\end{array}\right]$

(c) $\left[\begin{array}{cc}\dfrac{1}{2} & -\dfrac{1}{3} \\ -\dfrac{1}{2} & 0\end{array}\right]$

(d) none of these

Show Answer

Solution: Let $\mathrm{B}=\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}+\mathrm{A}^{3}+—–\infty$

$\Rightarrow \quad \mathrm{AB}=\mathrm{A}+\mathrm{A}^{2}+\mathrm{A}^{3}+—–\infty$

$\Rightarrow \quad \mathrm{B}-\mathrm{AB}=\mathrm{I}$

$B(I-A)=I$

$\Rightarrow \quad \mathrm{B}=(\mathrm{I}-\mathrm{A})^{-1}$

$\therefore \quad B=\left[\begin{array}{cc}0 & -2 \\ -3 & -3\end{array}\right]^{-1}=-\dfrac{1}{6}\left[\begin{array}{cc}-3 & 2 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}\dfrac{1}{2} & -\dfrac{1}{3} \\ \dfrac{-1}{2} & 0\end{array}\right]$

Answer: c

3. If $\mathrm{A}$ is non-singular and $(\mathrm{A}-2 \mathrm{I})(\mathrm{A}-4 \mathrm{I})=0$, then $\dfrac{1}{6} \mathrm{~A}+\dfrac{4}{3} \mathrm{~A}^{-1}=$

(a) $\mathrm{I}$

(b) 0

(c) $2 \mathrm{I}$

(d) $6 \mathrm{I}$

Show Answer

Solution: $(A-2 I)(A-4 I)=0$

$\begin{array}{ll} \Rightarrow & A^{2}-2 A-4 A+8 I=0 \\ \Rightarrow & A^{2}-6 A+8 I=0 \\ & A^{-1}\left(A^{2}-6 A+8 I\right)=A^{-1} 0\left(\text { Pre multiply by } A^{-1}\right) \\ & A^{-1} A^{2}-6 A^{-1}+8 A^{-1} \mathrm{I}=0 \\ \Rightarrow & \mathrm{A}-6 \mathrm{I}+8 \mathrm{~A}^{-1}=0 \\ \Rightarrow & \mathrm{A}+8 \mathrm{~A}^{-1}=6 \mathrm{I} \\ \Rightarrow & \dfrac{1}{6} \mathrm{~A}+\dfrac{4}{3} \mathrm{~A}^{-1}=\mathrm{I} \end{array}$

Answer: a

4. If $A$ and $B$ are square matrices such that $B=-A^{-1} B A$, then

(a) $A B+B A=0$

(b) $(A+B)^{2}=A^{2}+B^{2}$

(c) $(A+B)^{2}=A^{2}+2 A B+B^{2}$

(d) $(A+B)^{2}=A+B$

Show Answer

Solution: $B=-A^{-1} B A \Rightarrow A B=-\left(A A^{-1}\right)(B A) \Rightarrow A B=-I B A$

$\Rightarrow \quad \mathrm{AB}=-\mathrm{BA} \Rightarrow \mathrm{AB}+\mathrm{BA}=0$

Now $(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+B A+B^{2}=A^{2}+B^{2}$ $\hspace {2 cm}(\therefore \mathrm{AB}+\mathrm{BA}=0)$

Answer: a, b

5. If $A=\dfrac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ \mathrm{a} & 2 & \mathrm{~b}\end{array}\right]$ is an orthogonal matrix, then

(a) $\mathrm{a}=2, \mathrm{~b}=1$

(b) $\mathrm{a}=-2, \mathrm{~b}=-1$

(c) $\mathrm{a}=2, \mathrm{~b}=-1$

(d) $\mathrm{a}=-2, \mathrm{~b}=1$

Show Answer

Solution: $\because \mathrm{AA}^{\mathrm{T}}=\mathrm{I}$

$\Rightarrow \quad \dfrac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ \mathrm{a} & 2 & \mathrm{~b}\end{array}\right] \dfrac{1}{3}\left[\begin{array}{ccc}1 & 2 & \mathrm{a} \\ 2 & 1 & 2 \\ 2 & -2 & \mathrm{~b}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$\Rightarrow \quad \left[\begin{array}{ccc}9 & 0 & \mathrm{a}+4+2 \mathrm{~b} \\ 0 & 9 & 2 \mathrm{a}+2-2 \mathrm{~b} \\ \mathrm{a}+4+2 \mathrm{~b} & 2 \mathrm{a}+2-2 \mathrm{~b} & \mathrm{a}^{2}+4+\mathrm{b}^{2}\end{array}\right]=\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$

$\Rightarrow \quad \mathrm{a}+4+2 \mathrm{~b}=0,2 \mathrm{a}+2-2 \mathrm{~b}=0 \& \mathrm{a}^{2}+4+\mathrm{b}^{2}=9$ gives $\mathrm{a}=-2, \mathrm{~b}=-1$.

Answer: b

6. If $\mathrm{P}=\left[\begin{array}{cc}\dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\ \dfrac{-1}{2} & \dfrac{\sqrt{3}}{2}\end{array}\right], \mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\mathrm{Q}=\mathrm{PAP}^{\mathrm{T}}$ then $\mathrm{P}^{\mathrm{T}} \mathrm{Q}^{2005} \mathrm{P}=$

(a) $\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$

(b) $\left[\begin{array}{cc}4+2005 \sqrt{3} & 6015 \\ 2005 & 4-2005 \sqrt{3}\end{array}\right]$

(c) $\dfrac{1}{4}\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$

(d) none of these

Show Answer

Solution: Here $\mathrm{P}$ is an orthogonal matrix

$\therefore \quad \mathrm{PP}^{\mathrm{T}}=\mathrm{P}^{\mathrm{T}} \mathrm{P}=\mathrm{I}$

Now $P^{\mathrm{T}} \cdot \mathrm{Q}^{5005} \cdot \mathrm{P}=\mathrm{P}^{\mathrm{T}}$.Q.Q.Q.Q…….Q.P.

$\begin{array}{ll} = & \mathrm{P}^{\mathrm{T}}\left(\mathrm{PAP}^{\mathrm{T}}\right)\left(\mathrm{PAP}^{\mathrm{T}}\right)\left(\mathrm{PAP}^{\mathrm{T}}\right)——–\left(\mathrm{PAP}^{\mathrm{T}}\right) \mathrm{P} \\ = & \left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \mathrm{A}\left(\mathrm{P}^{\mathrm{T}}\right) \mathrm{A}\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \mathrm{A}——-\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \mathrm{A}\left(\mathrm{P}^{\mathrm{T}} \mathrm{P}\right) \\ = & \text { I.A.I.A.I.A.———– I.AI } \\ = & \text { A.A.A.——. } 2005 \text { times } \\ = & \mathrm{A}^{2005} \end{array}$

Now $A^{2}=A \cdot A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

$\mathrm{A}^{3}=\mathrm{A}^{2} \cdot \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \ 0 & 1\end{array}\right]$

$\therefore \quad \mathrm{A}^{2005}=\left[\begin{array}{cc}1 & 2005 \\ 0 & 1\end{array}\right]$

Answer: a

7. If $A=\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]$, then the value of $I+2 A+3 A^{2}+——–\infty \infty$ is

(a) $\left[\begin{array}{cc}4 & 1 \\ -4 & 0\end{array}\right]$

(b) $\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]$

(c) $\left[\begin{array}{cc}5 & 2 \\ -8 & -3\end{array}\right]$

(d) none of these

Show Answer

Solution: $\mathrm{A}^{2}=\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$

$\therefore \quad \mathrm{I}+2 \mathrm{~A}+3 \mathrm{~A}^{2}+4 \mathrm{~A}^{3}$——- $\infty=\mathrm{I}+2 \mathrm{~A}\left(\therefore \mathrm{A}^{2}=0, \mathrm{~A}^{3}=\mathrm{A}^{4}=\ldots \ldots .=0\right)$

$=\left[\begin{array}{cc}5 & 2 \\ -8 & -3\end{array}\right]$

Answer: c

Exercise

1. Consider an arbitrary $3 \times 3$ matrix $A=\left[a _{i j}\right]$, a matrix $B=\left[b _{i j}\right]$ is formed such that $b _{i j}$ is the sum of all the elements except $a _{\mathrm{ij}}$ in the $\mathrm{i} _{\text {th }}$ row of $A$. If there exists a matrix $X$ with constant elements such that $\mathrm{AX}=\mathrm{B}$, then $\mathrm{X}$ is

(a) skew symmetric

(b) null matrix

(c) diagonal matrix

(d) none of these

Show Answer Answer: d

2. Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

(a) If $|\mathrm{A}|= \pm 1$, then $\mathrm{A}^{-1}$ exists but all its entries are not necessarily integers.

(b) If $|A|= \pm 1$, then $\mathrm{A}^{-1}$ exists and all its entries are non integers.

(c) If $|\mathrm{A}|= \pm 1$, then $\mathrm{A}^{-1}$ exists and all its entries are integers.

(d) If $|A|= \pm 1$, then $A^{-1}$ need not exist.

Show Answer Answer: c

3. $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ are positive numbers greater than 10 such, that $\mathrm{Y}$ and $\mathrm{Z}$ have respectively $1 \& 0$ at their unit’s place and $\Delta$ is the determinant $\left|\begin{array}{lll}\mathrm{X} & 4 & 1 \\ \mathrm{Y} & 0 & 1 \\ \mathrm{Z} & 1 & 0\end{array}\right|$. If $(\Delta+1)$ is divisible by 10 then $\mathrm{X}$ has its unit’s place

(a) 1

(b) 0

(c) 2

(d) none of these

Show Answer Answer: c

4. If $\mathrm{P}$ is non singular matrix, then value of $\operatorname{adj}\left(\mathrm{P}^{-1}\right)$ in terms of $\mathrm{P}$ is

(a) $\dfrac{\mathrm{P}}{|\mathrm{P}|}$

(b) $\mathrm{P}|\mathrm{P}|$

(c) $\mathrm{P}$

(d) none of these

Show Answer Answer: a

5. If $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & \mathrm{a}\end{array}\right]$ is $\mathrm{n}^{\text {th }}$ root of $\mathrm{I} _{2}$ then choose the correct statements.

i. if $\mathrm{n}$ is odd, $\mathrm{a}=1, \mathrm{~b}=0$

ii. if $\mathrm{n}$ is odd, $\mathrm{a}=-1, \mathrm{~b}=0$

iii. if $\mathrm{n}$ is even, $\mathrm{a}=1, \mathrm{~b}=0$

iv. if $\mathrm{n}$ is even $\mathrm{a}=-1, \mathrm{~b}=0$

(a) i, ii, iii

(b) ii, iii, iv

(c) i,ii,iii

(d) i, iii,iv

Show Answer Answer: d

6. If $A^{2}=I$, then the value of $|A-I|$ (where $A$ has order 3$)$

(a) 1

(b) -1

(c) 0

(d) cannot say anything

Show Answer Answer: d

7. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \& f(x)=\dfrac{1+x}{1-x}$ then $f(A)$ is

(a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

(b) $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$

(c) $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$

(d) none of these

Show Answer Answer: c

8. If $\mathrm{f}(\mathrm{x})$ satisfies the $\left|\begin{array}{ccc}\mathrm{f}(\mathrm{x}-3) & \mathrm{f}(\mathrm{x}+4) & \mathrm{f}\left((\mathrm{x}+1)(\mathrm{x}-2)-(\mathrm{x}-1)^{2}\right) \\ 5 & 4 & -5 \\ 5 & 6 & 15\end{array}\right|=0 \forall$ equation real $\mathrm{x}$, then

(a) $\mathrm{f}(\mathrm{x})$ is not periodic

(b) $\mathrm{f}(\mathrm{x})$ is periodic and of period 1

(c) $\mathrm{f}(\mathrm{x})$ is periodic of period 7

(d) $\mathrm{f}(\mathrm{x})$ is an odd function

Show Answer Answer: c

9. Let $\mathrm{M} \& \mathrm{~N}$ be two $3 \times 3$ non-singular skew-symmetric matrices such that $\mathrm{MN}=\mathrm{NM}$. If $\mathrm{P}^{\mathrm{T}}$ denotes the transpose of $\mathrm{P}$, then $\mathrm{M}^{2} \mathrm{~N}^{2}(\mathrm{MN})^{-1}\left(\mathrm{M}^{\mathrm{T}} \mathrm{N}^{-1}\right)^{\mathrm{T}}$ is equals

(a) $\mathrm{M}^{2}$

(b) $-\mathrm{N}^{2}$

(c) $-\mathrm{M}^{2}$

(d) $\mathrm{MN}$

Show Answer Answer: c

10. Read the following and answer the questions.

Let $\mathrm{p}$ be an odd prime number and $\mathrm{T} _{\mathrm{p}}$ be the following set of $2 \times 2$ matrices $\mathrm{T} _{\mathrm{P}}=\left\{\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{a}\end{array}\right] ; \mathrm{a}, \mathrm{b}, \mathrm{c} \in\{0,1,2, \ldots . \mathrm{p}-1\}\right\}$.

i. The number $\mathrm{A}$ is $\mathrm{T} _{\mathrm{p}}$ such that $\mathrm{A}$ is either symmetric or skew-symmetric or both, and $\operatorname{det}(\mathrm{A})$ is divisible by $\mathrm{p}$ is

(a) $(\mathrm{p}-1)^{2}$

(b) $2(\mathrm{p}-1)$

(c) $(\mathrm{p}-1)^{2}+1$

(d) $2 \mathrm{p}-1$

ii. The number of $A$ in $T _{p}$ such that the trace of $A$ is not divisible by $p$ but det $(A)$ is divisible by $\mathrm{p}$ is

(a) $(\mathrm{p}-1)\left(\mathrm{p}^{2}-\mathrm{p}+1\right)$

(b) $\mathrm{p}^{3}-(\mathrm{p}-1)^{2}$

(c) $(\mathrm{p}-1)^{2}$

(d) $(p-1)\left(p^{2}-2\right)$

iii. The number of $A$ is $T _{p}$ such that $\operatorname{det}(\mathrm{A})$ is not divisible by $\mathrm{p}$ is

(a) $2 \mathrm{p}^{2}$

(b) $\mathrm{p}^{3}-5 \mathrm{p}$

(c) $\mathrm{p}^{3}-3 \mathrm{p}$

(d) $p^{3}-p^{2}$

Show Answer Answer: (i) d (ii) c (iii) d

11.* An item of column I can be matched with more than one item of column II. All the items of column II are to be matched

Column I Column II
(a) If $a, b, c$ are all different from 0 such that $\dfrac{1}{\mathrm{a}}+\dfrac{1}{\mathrm{~b}}+\dfrac{1}{\mathrm{c}}=0$, then the matrix $\mathrm{A}=\left[\begin{array}{ccc}1+\mathrm{a} & 1 & 1 \\ 1 & 1+\mathrm{b} & 1 \\ 1 & 1 & 1+\mathrm{c}\end{array}\right]$ is (p) symmetric
(b) If $\alpha, \beta, \gamma$ are three real numbers, then $\text { the matrix } A=\left[\begin{array}{ccc} 1 & \cos (\alpha-\beta) & \cos (\alpha-\gamma) \\ \cos (\beta-\alpha) & 1 & \cos (\beta-\gamma) \\ \cos (\gamma-\alpha) & \cos (\gamma-\beta) & 1 \end{array}\right]$ (q) singular
(c) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle, then the matrix $A=\left[\begin{array}{ccc} \sin 2 A & \sin C & \sin B \\ \sin C & \sin 2 B & \sin A \\ \sin B & \sin A & \sin 2 C \end{array}\right]$ is (r) non singular
(s) invertible
(t) non invertible
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{t} ; \mathrm{c} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{t}$

12. In $\triangle \mathrm{ABC}$, if $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b} \\ 1 & \mathrm{c} & \mathrm{a} \\ 1 & \mathrm{~b} & \mathrm{c}\end{array}\right|=0$, then the value of $\left(\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}\right) 64$ must be

(a) 64

(b) -64

(c) 144

(d) none of these

Show Answer Answer: c


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ