Matrices And Determinants - Consistency and Solution of Simultaneous Linear Equations (Lecture-04)

Eigen Value Problem

Let $A$ be a square matrix of order $n$. If there exists a scalar $\lambda$ and an non-zero vector such that $A X=$ $\lambda X, \lambda$ is called an eigen value of $A \& X$, an eigen vector of $A$.

The homogeneous system

$(A-\lambda I) X=0$ has non trivial solutions of $|A-\lambda I|=0$

which gives a polynomial of degree $n$. This equation is called the characteristic equation of $A$ and its roots are eigen values.

Properties:
  • The sum of all eigen values $=$ trace of $A=\sum\limits _{\mathrm{I}=1}^{\mathrm{n}} \mathrm{a} _{\mathrm{ii}}$
  • Product of all eigen values $=|\mathrm{A}|$
  • If $A$ is singular, then one of the eigen values is zero
  • The eigen value of a null matrix is zero
  • The eigen value of a unit matrix is unity.
  • All the eigen values of a real orthogonal matrix have unit modulus i.e. $|\lambda|=1$

Cayley-Hamilton Theorem

Every square matrix A satisfies its characteristic equation $|A-\lambda I|=0$

Solution of a system of linear equation (matrix method)

Solution of the system $\hspace {2 cm}\mathrm{a} _{11} \mathrm{x}+\mathrm{a} _{12} \mathrm{y}+\mathrm{a} _{13} \mathrm{z}=\mathrm{b} _{1}$

$\hspace {3 cm}\begin{aligned} & a _{21} x+a _{22} y+a _{23} z=b _{2} \\ & a _{31} x+a _{32} y+a _{33} z=b _{3} \end{aligned} \quad \text { is given }$

by $X=A^{-1} B \quad$ where $A=\left[\begin{array}{lll}a _{11} & a _{12} & a _{13} \\ a _{21} & a _{22} & a _{23} \\ a _{31} & a _{32} & a _{33}\end{array}\right], B=\left[\begin{array}{l}b _{1} \\ b _{2} \\ b _{3}\end{array}\right]$

If $|\mathrm{A}| \neq 0$, the system is consistent and have unique solution.

If $|A|=0$, find $(\operatorname{adj} A) B$.

If $(\operatorname{adj} A) B=0$, the system has infinitely many solutions.

If (adj A) $B \neq 0$ the system is inconsistent and has no solution.

Echelon from of a matrix

A matrix A is said to be in echelon form if

i. The first non-zero element in each row is 1

ii. Every non-zero row in A precedes every zero row

iii. The number of zeroes before first non-zero element in $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots$ rows should be in increasing order.

Rank of a matrix

A non zero matrix $\mathrm{A} _{\mathrm{mxn}}$ is said to have rank $\mathrm{r}$ if at least one of its $\mathrm{rxr}$ minors is nonzero while every $(\mathrm{r}+1)$ $x(r+1)$ minor, if any, is zero. It is denoted as $\rho(A)=r$

Rank of a null matrix is zero.

Important results

$\rho(\mathrm{A})=\leq \min {\mathrm{m}, \mathrm{n}}$

$\rho\left(\mathrm{I} _{\mathrm{n}}\right)=\mathrm{n}$

If $\mathrm{A}$ is nonsingular, $\rho(A)=\mathrm{n}$ otherwise $\rho(A)<\mathrm{n}$.

Elementary operations do not change the rank of a matrix

Nullity of a matrix

For a square matrix of order $n, n-\rho(A)=n(A)$ is called the nullity of $A$ and is denoted by $N(A)$

Solution of a system by Rank method

Consider the non homogeneous system

$\left[\begin{array}{lll}a _{11} & a _{12} & a _{13} \\ a _{21} & a _{22} & a _{23} \\ a _{31} & a _{32} & a _{33}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left|\begin{array}{l}b _{1} \\ b _{2} \\ b _{2}\end{array}\right|, A X=B$

Let $r$ be the rank of coefficient matrix and $s$ be the rank of the augmented matrix

$[A B]=\left[\begin{array}{llll}a _{11} & a _{12} & a _{13} & b _{1} \\ a _{21} & a _{22} & a _{23} & b _{2} \\ a _{31} & a _{32} & a _{33} & b _{3}\end{array}\right]$

If $r=s$, the system is consistent (has one or more solutions)

If $\mathrm{r}=\mathrm{s}=3$, (no. of unknowns), then the system has unique solutions.

If $r=s=2$ (< the no. of unknowns), then the system is consistent and has infinitely many solutions.

If $\mathrm{r} \neq \mathrm{s}$, the system is inconsistent (no solution)

Note: consider the system of planes

$\mathrm{a} _{1} \mathrm{x}+\mathrm{b} _{1} \mathrm{y}+\mathrm{c} _{1} \mathrm{z}=\mathrm{d} _{1}$

$\mathrm{a} _{2} \mathrm{x}+\mathrm{b} _{2} \mathrm{y}+\mathrm{c} _{2} \mathrm{z}=\mathrm{d} _{2}$

$a _{3} x+b _{3} y+c _{3} z=d _{3}$

Let $r$ be the rank of coefficient matrix and $s$ be the rank of the augmented matrix.

If $\mathrm{r}=3, \mathrm{~s}=3$, the planes meet at a single point.

If $\mathrm{r}=2, \mathrm{~s}=2$, the planes intersect along a single straight line

If $\mathrm{r}=2, \mathrm{~s}=3$, the planes from a triangular prism

If $\mathrm{r}=1, \mathrm{~s}=2$, the planes are parallel

If $\mathrm{r}=1, \mathrm{~s}=1$, the planes are coincident.

Geometrical transformations (Rotation & Reflexions)

i. Reflection in $\mathrm{x}$-axis.

Let $\mathrm{P}^{\prime}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ be the reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on $\mathrm{x}$-axis

then $\mathrm{x}^{\prime}=\mathrm{x} \& \mathrm{y}^{\prime}=-\mathrm{y}$

i.e. $x^{\prime}=1 . x+0 . y$

$\mathrm{y}^{\prime}=0 . \mathrm{x}+(-1) \mathrm{y}$

i.e. $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad$ The matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ describes reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the $\mathrm{x}$-axis

ii. Reflection in the y-axis

Here $\mathrm{x}^{\prime}=-\mathrm{x} \& \mathrm{y}^{\prime}=\mathrm{y}$

i.e. $x^{\prime}=(-1) x+0 y$

$\quad \quad\mathrm{y}^{\prime}=0 \mathrm{x}+1 \mathrm{y}$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ describes reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the $\mathrm{y}$-axis

iii. Reflection through the origin

$\mathrm{x}^{\prime}=(-1) \mathrm{x}+0 \mathrm{y}$

$\mathrm{y}^{\prime}=0 \mathrm{x}+(-1) \mathrm{y}$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ describes reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ through the origin

iv. Reflection in the line $y=x$

$\mathrm{x}^{\prime}=0 . \mathrm{x}+1 . \mathrm{y}$

$\mathrm{y}^{\prime}=1 . \mathrm{x}+0 . \mathrm{y}$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ describes reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the line $\mathrm{y}=\mathrm{x}$

v. Reflection in the line $\mathrm{y}=\mathrm{x} \tan \theta($ or $\mathrm{y}=\mathrm{mx})$

$\mathrm{x}^{\prime}=\mathrm{x} \cos 2 \theta+\mathrm{y} \sin 2 \theta$

$\mathrm{y}^{\prime}=\mathrm{x} \sin 2 \theta+\mathrm{y}(-\cos 2 \theta) \quad\left(\because \quad \mathrm{O}^{\prime}\right.$ is the mid point of $\left.\mathrm{P} \& \mathrm{P}^{\prime}\right)$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}\dfrac{1-\mathrm{m}^{2}}{1+\mathrm{m}^{2}} & \dfrac{2 \mathrm{~m}}{1+\mathrm{m}^{2}} \\ \dfrac{2 \mathrm{~m}}{1+\mathrm{m}^{2}} & \dfrac{-\left(1-\mathrm{m}^{2}\right)}{1+\mathrm{m}^{2}}\end{array}\right]$ describe reflection of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the line

$\mathrm{y}=\mathrm{x} \tan \alpha . \quad($ or $\mathrm{y}=\mathrm{mx})$

vi. Rotation through an angle $\theta$.

$\mathrm{OP}=\mathrm{OP}^{\prime}=\mathrm{r}$

Let $\mathrm{OP}$ rotate through an angle $\theta$ in anticlockwise direction.

$\mathrm{x}^{\prime}=\mathrm{x} \cos \theta-\mathrm{y} \sin \theta$

$\mathrm{y}^{\prime}=\mathrm{x} \sin \theta+\mathrm{y} \cos \theta$

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

$\therefore \quad\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ describes a rotation of a line segment through an angle $\theta$.

Solved Examples:

1. If $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $\mathrm{A}^{-1}=\dfrac{1}{6}\left(\mathrm{~A}^{2}-\mathrm{cA}+\mathrm{dI}\right)$, then $\mathrm{c}$ and $\mathrm{d}$ are

(a) $-6,-11$

(b) 6,11

(c) $-6,11$

(d) $6,-11$

Show Answer

Solution: The characteristic equation is $|A-\lambda I|=0$

$\begin{aligned} & \quad\left|\begin{array}{ccc} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & -2 & 4-\lambda \end{array}\right|=0 \\ \\ & \Rightarrow \quad \lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \end{aligned}$

$\therefore \quad$ By Cayley’s Hamilton Theorem

$\mathrm{A}^{3}-6 \mathrm{~A}^{2}+11 \mathrm{~A}-6 \mathrm{I}=0$

$\Rightarrow \mathrm{A}^{-1} \mathrm{~A}^{3}-6 \mathrm{~A}^{-1} \mathrm{~A}^{2}+11 \mathrm{~A}^{-1} \mathrm{~A}=6 \mathrm{~A}^{-1} \mathrm{I}$

$\Rightarrow \quad \mathrm{A}^{2}-6 \mathrm{~A}+11 \mathrm{I}=6 \mathrm{~A}^{-1}$

$\Rightarrow \quad \mathrm{c}=6, \mathrm{~d}=11$

Answer: b

2. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then $\mathrm{A}^{4}-5 \mathrm{~A}^{3}-\mathrm{A}^{2}-4 \mathrm{~A}-\mathrm{I}=$

(a) 0

(b) I

(c) A

(d) $\mathrm{A}+\mathrm{I}$

Show Answer

Solution: The characteristic equation is $\left|\begin{array}{cc}1-\lambda & 2 \ 3 & 4-\lambda\end{array}\right|=0$

$\begin{array}{ll} \Rightarrow & \lambda^{2}-5 \lambda-2=0 \\ \therefore & \mathrm{A}^{2}-5 \mathrm{~A}-2 \mathrm{I}=0 \\ \Rightarrow & \mathrm{A}^{3}=5 \mathrm{~A}^{2}+2 \mathrm{IA} \\ \Rightarrow & \mathrm{A}^{4}=5 \mathrm{~A}^{3}+2 \mathrm{IA}^{2} \\ \therefore & \mathrm{A}^{4}-5 \mathrm{~A}^{3}-\mathrm{A}^{2}=\mathrm{A}^{2}=5 \mathrm{~A}+2 \mathrm{I} \\ & \mathrm{A}^{4}-5 \mathrm{~A}^{3}-\mathrm{A}^{2}-4 \mathrm{~A}-\mathrm{I}=\mathrm{A}+\mathrm{I} \end{array}$

Answer: d

3. If $\mathrm{A}=\left[\begin{array}{cc}-1 & \dfrac{3}{2} \\ \dfrac{-1}{2} & \dfrac{1}{2}\end{array}\right]$, then $\mathrm{A}^{3}=$

(a) $\dfrac{\mathrm{A}}{4}$

(b) $\dfrac{\mathrm{A}}{8}$

(c) $\dfrac{\mathrm{I}}{4}$

(d) $\dfrac{\mathrm{I}}{8}$

Show Answer

Solution: The characteristic equation is

$\begin{array}{ll} & \left|\begin{array}{cc} -1-\lambda & \dfrac{3}{2} \\ \dfrac{-1}{2} & \dfrac{1}{2}-\lambda \end{array}\right|=0 \\ \Rightarrow & \lambda^{2}+\dfrac{\lambda}{2}+\dfrac{1}{4}=0 \\ \Rightarrow & \mathrm{A}^{2}+\dfrac{\mathrm{A}}{2}+\dfrac{\mathrm{I}}{4}=0 \text { gives } \mathrm{A}^{2}=\dfrac{-\mathrm{A}}{2}-\dfrac{\mathrm{I}}{4} \\ \therefore & \mathrm{A}^{3}=\dfrac{-\mathrm{A}^{2}}{2}-\dfrac{\mathrm{A}}{4}=\dfrac{-1}{2}\left(\dfrac{-\mathrm{A}}{2}-\dfrac{\mathrm{I}}{4}\right)-\dfrac{\mathrm{A}}{4} \end{array}$

$=\dfrac{\mathrm{A}}{4}+\dfrac{\mathrm{I}}{8}-\dfrac{\mathrm{A}}{4}=\dfrac{\mathrm{I}}{8}$

Answer: d

4. The number of values of $k$ for which the system of equations $(k+1) x+8 y=4 k, k x+(k+3) y=3 k-1$ has infinitely many solutions

(a) 0

(b) 1

(c) 2

(d) Infinite

Show Answer

Solution: $\quad \Delta=0 \Rightarrow\left|\begin{array}{cc}\mathrm{k}+1 & 8 \ \mathrm{k} & \mathrm{k}+3\end{array}\right|=0$ gives $\mathrm{k}^{2}-4 \mathrm{k}+3=0$

$\therefore \mathrm{k}=1,3$

Now put $\mathrm{k}=3 \Rightarrow 4 \mathrm{x}+8 \mathrm{y}=12,3 \mathrm{x}+6 \mathrm{y}=8$

$\therefore \quad \mathrm{x}+2 \mathrm{y}=3 \neq \dfrac{8}{3}$

$\therefore \quad$ No solution

Hence $\mathrm{k}=1$ gives infinite solutions

Answer: b

5. If the system of equations $x-k y-z=0, k x-y-z=0$ and $x+y-z=0$ has a non-zero solution, then $k=$

(a) 0

(b) 1

(c) -1

(d) 2

Show Answer

Solution: $\left|\begin{array}{ccc}1 & -\mathrm{k} & -1 \\ \mathrm{k} & -1 & -1 \\ 1 & 1 & -1\end{array}\right|=0$

$\Rightarrow \quad \mathrm{k}^{2}-1=0$

gives $\mathrm{k}= \pm 1$

Answer: b, c

6. If the system of equations $x+2 a y+a z=0, x+3 b y+b z=0$ and $x+4 c y+c z=0$ has a non-zero solution, then $a, b, c$ are in

(a) $\mathrm{AP}$

(b) $\mathrm{GP}$

(c) $\mathrm{HP}$

(d) none of these

Show Answer

Solution: $\left|\begin{array}{ccc}1 & 2 \mathrm{a} & \mathrm{a} \\ 1 & 3 \mathrm{~b} & \mathrm{~b} \\ 1 & 4 \mathrm{c} & \mathrm{c}\end{array}\right|=0$

$\Rightarrow \quad-\mathrm{bc}-2 \mathrm{a}(\mathrm{c}-\mathrm{b})+\mathrm{a}(4 \mathrm{c}-3 \mathrm{~b})=0$ Gives $2 \mathrm{ac}=\mathrm{ab}+\mathrm{bc}$

$\Rightarrow \quad \dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$ gives $a, b, c$ in HP

Answer: c

7. The system of equations

$\alpha x+y+z=\alpha-1$

$x+\alpha y+z=\alpha-1 \quad$ has no solution if $\alpha=$

$\mathrm{x}+\mathrm{y}+\alpha \mathrm{z}=\alpha-1$

(a) -2 or 1

(b) -2

(c) 1

(d) -1

Show Answer

Solution:

$\left|\begin{array}{lll}\alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{array}\right|=0 \Rightarrow \alpha^{3}-3 \alpha+2=0$

$(\alpha-1)^{2}(\alpha+2)=0$

gives $\alpha=1,-2$

If $\alpha=1, \Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=0$ $\hspace {2 cm}$ gives infinite solutions

$\therefore \quad \alpha=-2$

Answer: b

Exercise:

1. If $c<1$ and the system of equation $x+y-1=0,2 x-y-c=0$ and $-b x+3 b y-c=0$ is consistent, then the possible real values of $b$ are

(a) $\mathrm{b} \in\left(-3, \dfrac{3}{4}\right)$

(b) $\mathrm{b} \in\left(-\dfrac{3}{2}, 4\right)$

(c) $\mathrm{b} \in\left(-\dfrac{3}{4}, 3\right)$

(d) none of these

Show Answer Answer: c

2. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P with common ration $\mathrm{r} _{1}$ and $\alpha, \beta, \gamma$ are in G.P. with common ratio $\mathrm{r} _{2}$ and equations $a x+\alpha y+z=0, b x+\beta y+z=0, a x+\gamma y+z=0$ have only zero solution. Then which of the following is not true?

(a) $\mathrm{r} _{1} \neq 1$

(b) $\mathrm{r} _{2} \neq 1$

(c) $r _{1} \neq r _{2}$

(d) none of these

Show Answer Answer: d

3. If $f(x)=a+b x+c x^{2}$ and $\alpha, \beta, \gamma$ are roots of the equation $x^{3}=1$, then $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is equal to

(a) $\mathrm{f}(\alpha)+\mathrm{f}(\beta)+\mathrm{f}(\gamma)$

(b) $\mathrm{f}(\alpha) \mathrm{f}(\beta)+\mathrm{f}(\beta) \mathrm{f}(\gamma)+\mathrm{f}(\gamma) \mathrm{f}(\alpha)$

(c) $\mathrm{f}(\alpha) \mathrm{f}(\beta) \mathrm{f}(\gamma)$

(d) $-\mathrm{f}(\alpha) \mathrm{f}(\beta) \mathrm{f}(\gamma)$

Show Answer Answer: d

4. Let $a, b \& c$ be such that $b(a+c) \neq 0$. If

$\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|+\left|\begin{array}{ccc}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} a & (-1)^{n} c\end{array}\right|=0$, then the value of ’ $n$ ’ is

(a) zero

(b) any even integer

(c) any odd integer

(d) any integer

Show Answer Answer: c

5. If $a, b, c$ are the sides of $\triangle \mathrm{ABC}$ such that $\left|\begin{array}{ccc}\mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2} \\ (\mathrm{a}+1)^{2} & (\mathrm{~b}+1)^{2} & (\mathrm{c}+1)^{2} \\ (\mathrm{a}-1)^{2} & (\mathrm{~b}-1)^{2} & (\mathrm{c}-1)^{2}\end{array}\right|=0$ then

(a) $\triangle \mathrm{ABC}$ is non-isosceles right angled triangle

(b) $\triangle \mathrm{ABC}$ is an equilateral triangle

(c) $\triangle \mathrm{ABC}$ is an acute angled triangle with no two angles being equal

(d) $\triangle \mathrm{ABC}$ is an isosceles triangle

Show Answer Answer: d

6. $\mathrm{a} _{1} \mathrm{x}+\mathrm{b} _{1} \mathrm{y}+\mathrm{c} _{1} \mathrm{z}+\mathrm{d} _{1},=0, \mathrm{a} _{2} \mathrm{x}+\mathrm{b} _{2} \mathrm{y}+\mathrm{c} _{2} \mathrm{z}+\mathrm{d} _{2}=0, \quad \mathrm{a} _{3} \mathrm{x}+\mathrm{b} _{3} \mathrm{y}+\mathrm{c} _{3} \mathrm{z}+\mathrm{d} _{3}=0$ which represent planes $\mathrm{P} _{1}$, $\mathrm{P} _{2} \& \mathrm{P} _{3}$ respectively. Let

A=$\left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right] \text { and } B=\left[\begin{array}{c} a_1 b_1 c_1 d_1 \\ a_2 b_2 c_2 d_2 \\ a_3 b_3 c_3 d_3 \end{array}\right]$ now match the entries form the following columns.

Column I Column II
a. If $r a n k$ of $A=\operatorname{rank}$ of $B=3$, then $\mathrm{P} _{1}, \mathrm{P} _{1}, \mathrm{P} _{3}$ are p. coincident
b. If rank of $A=2 \& \operatorname{rank}$ of $B=3$, then $\mathrm{P} _{1}, \mathrm{P} _{1}, \mathrm{P} _{3}$ are q. are parallel
c. If rank of $A=r a n k$ of $B=2$, then $\mathrm{P} _{1}, \mathrm{P} _{1}, \mathrm{P} _{3}$ are r. from a prism
d. If rank of $A=\operatorname{rank}$ of $B=1$, then $\mathrm{P} _{1}, \mathrm{P} _{1}, \mathrm{P} _{3}$ are s. intersect along a line
t. intersect in a unique point
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{t} ; \mathrm{b} \rightarrow \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{p}$

7. Let $\mathrm{M}$ be a $3 \times 3$ matrix satisfying $\mathrm{M}\left[\begin{array}{l}0 \ 1 \ 0\end{array}\right]=\left[\begin{array}{l}-1 \\ 2 \\ 3\end{array}\right], \mathrm{M}\left[\begin{array}{l}1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ -1\end{array}\right]$ and $\mathrm{M}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 12\end{array}\right]$, then the sum of the diagonal entries of $\mathrm{M}$ is

(a) 9

(b) 7

(c) 0

(d) none of these

Show Answer Answer: a

8.* For all values of $\lambda$, the rank of the matrix $A=\left[\begin{array}{ccc}1 & 4 & 5 \\ \lambda & 8 & 8 \lambda-6 \\ 1+\lambda^{2} & 8 \lambda+4 & 2 \lambda+21\end{array}\right]$

(a) for $\lambda=2, \rho(\mathrm{A})=1$

(b) $\lambda=-1, \rho(\mathrm{A})=2$

(c) for $\lambda \neq 2,-1, \rho(\mathrm{A})=3$

(d) none of these

Show Answer Answer: a, b, c

9. Read the passage and answer the following questions.

If $\mathrm{e}^{\mathrm{A}}$ is defined as $\mathrm{e}^{\mathrm{A}}=\mathrm{I}+\mathrm{A}+\dfrac{\mathrm{A}^{2}}{2 !}+\dfrac{\mathrm{A}^{3}}{3 !}+\ldots \ldots \ldots$

$=\dfrac{1}{2}\left[\begin{array}{ll}f(x) & g(x) \ g(x) & f(x)\end{array}\right]$ where $A=\left[\begin{array}{ll}x & x \ x & x\end{array}\right]$ and $0<x<1$, then $I$ is an identity function.

i. $\quad \int \dfrac{g(x)}{f(x)} d x$ is equal to

(a) $\log \left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)+\mathrm{C}$

(b) $\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)+\mathrm{C}$

(c) $\log \left(\mathrm{e}^{2 \mathrm{x}}-1\right)+\mathrm{C}$

(d) none of these

ii. $\quad \int(g(x)+1) \sin x d x$ is equal to

(a) $\dfrac{e^{x}}{2}(\sin x-\cos \mathrm{x})+C$

(b) $\dfrac{\mathrm{e}^{2 \mathrm{x}}}{5}(2 \sin \mathrm{x}-\cos \mathrm{x})+\mathrm{C}$

(c) $\dfrac{e^{x}}{5}(\sin 2 x-\cos 2 x)+C$

(d) none of these

iii. $\quad \int \dfrac{f(x)}{\sqrt{g(x)}} d x$ is equal to

(a) $\dfrac{1}{2 \sqrt{\mathrm{e}^{\mathrm{x}}-1}}-\operatorname{cosec}^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{C}$

(b) $\dfrac{2}{2 \sqrt{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}}-\sec ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{C}$

(c) $\dfrac{1}{2 \sqrt{\mathrm{e}^{2 x}-1}}+\sec ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{C}$

(d) none of these

Show Answer Answer: (i) a (ii) b (iii) c

10. Consider three matrices $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$. Then the value of the sum $\operatorname{tr}(\mathrm{A})+\operatorname{tr}\left(\dfrac{\mathrm{ABC}}{2}\right)+\operatorname{tr}\left(\dfrac{\mathrm{A}(\mathrm{BC})^{3}}{4}\right)+\operatorname{tr}\left(\dfrac{\mathrm{A}(\mathrm{BC})^{3}}{8}\right)+\ldots \ldots$. is

(a) 6

(b) 9

(c) 12

(d) none of these

Show Answer Answer: a

11. If $\mathrm{A}=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$, then $\mathrm{A}^{3}-7 \mathrm{~A}^{2}+10 \mathrm{~A}=$

(a) $5 \mathrm{I}+\mathrm{A}$

(b) $5 \mathrm{I}-\mathrm{A}$

(c) $\mathrm{A}-5 \mathrm{I}$

(d) $6 \mathrm{I}$

Show Answer Answer: b

12. If $y=\exp \left(\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots ..\right) \log _{e} 2\right)$ satisfies $x^{2}-17 x+16=0$, where $0<x<\dfrac{\pi}{2}$ and if $\dfrac{2 \sin 2 x}{1+\cos ^{2} x}=\alpha, \dfrac{2 \sin x}{\sin x+\cos x}=\beta, \sum\limits _{n=1}^{\infty}(\cot x)^{n}=\gamma, \sum\limits _{n=1}^{\infty}(\cot x)^{2 n}=\delta$ then the sum of all the elements of the matrix $\left[\begin{array}{ll}3 \alpha & 3 \beta \\ 4 \gamma & 9 \delta\end{array}\right]$ is

(a) a perfect square

(c) 16

(b) not a perfect square

(d) 15

Show Answer Answer: b

13. If $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{R}$ satisfy the following equations.

$x+y+z+w=1 ; x+2 y+4 z+8 w=16, x+3 y+9 z+27 w=81$ and $x+4 y+16 z+64 w=256$, then the pairs

which have H.C.F as 2 is

(a) $|\mathrm{w}|,|\mathrm{z}|$

(b) $|w|,|y|$

(c) $|y|,|x|$

(d) $|z|,|x|$

Show Answer Answer: c

14. If $(\alpha \beta)(\delta \beta)=\gamma \gamma \gamma$ such that $\alpha, \beta, \delta, \gamma$ represent a number from 1 to 9 and are different digits and $\alpha \beta, \delta \beta$ are two digit numbers and $\gamma \gamma \gamma$ is three digit number and the trace of the matrix $\mathrm{A}=$ $\left[\begin{array}{llll}\alpha & 1 & 2 & 0 \\ 0 & \beta & 1 & 1 \\ 0 & 0 & \gamma & 3 \\ 1 & 1 & 0 & \delta\end{array}\right]$ is a, then $\dfrac{a}{7}=$

(a) 21

(b) 7

(c) 3

(d) none of these

Show Answer Answer: c

15. Let $\mathrm{A}=\left[\begin{array}{cc}1 & 3 / 2 \\ 1 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}4 & -3 \\ -2 & 2\end{array}\right]$ and $\mathrm{C} _{\mathrm{r}}=\left[\begin{array}{cc}\mathrm{r} \cdot 3^{\mathrm{r}} & 2^{\mathrm{r}} \\ 0 & (\mathrm{r}-1) \mathrm{3}^{\mathrm{r}}\end{array}\right]$ be given three matrices, then the value of $\sum\limits _{\mathrm{r}=1}^{50} \operatorname{tr}\left((\mathrm{AB})^{\mathrm{r}} \mathrm{C} _{\mathrm{r}}\right)=\mathrm{a} .3^{\mathrm{b}}+3$ then $\dfrac{\mathrm{a}+\mathrm{b}}{25}=$

(a) 4

(b) 16

(c) 49

(d) none of these

Show Answer Answer: a


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ