Parabola (Lecture-02)

Equation of Normal

Parabola Point form Pt.of contact Parametric form Point of contact slope Form Pt.of contact
$y^2=4 a x$ $y-y_1=\frac{-y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(a t^2, 2 a t\right)$ $y=m x-2 a m-a m^3$ $\left(a m^2,-2 a m\right)$
$y^2=-4 a x$ $y-y_1=\frac{y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(-a t^2, 2 a t\right)$ $y=m x+2 a m+a m^3$ $\left(-a m^2, 2 a m\right)$
$x^2=4 a y$ $x-x_1=\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=-t y+2 a t+a t^3$ $\left(2 a t, a t^2\right)$ $y=m x+2 a+\frac{a}{m^2}$ $\left(-\frac{2 a}{m}, \frac{a}{m^2}\right)$
$x^2=-4 a y$ $x-x_1=\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=t y+2 a t+a t^3$ $\left(2 a t,-a t^2\right)$ $y=m x-2 a-\frac{a}{m^2}$ $\left(\frac{2 a}{m},-\frac{a}{m^2}\right)$

Equation of normal to the parabola $(y-k)^{2}=4(x-h)$ is

$y-k=m(x-h)-2 a m-a^{3}$

Properties of Normal

1. If the normal at the point $\mathrm{P}\left(\mathrm{at} _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ meets the parabola at

$\mathrm{Q}\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$, then $\mathrm{t} _{2}=-\mathrm{t} _{1}-\dfrac{2}{\mathrm{t} _{1}}$

2. If the normal at the points $\left(a t _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ and $\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$ meet on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, then $\mathrm{t} _{1} \mathrm{t} _{2}=2$.

3. No normal other than axis passes through focus.

Important Properties :

  • If the tangent and normal at any point ’ $\mathrm{P}$ ’ of the parabola intersect the axis at $\mathrm{T}$ and $\mathrm{N}$ then $\mathrm{ST}$ $=\mathrm{SN}=\mathrm{SP}$ where $\mathrm{S}$ in the focus.
  • The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the focus.

$\angle \mathrm{PSQ}=90^{\circ}$

  • Any tangent to a parabola and the perpendicular on it from the focus meet on the tangent at the vertex.

$\angle \mathrm{PQS}=90^{\circ}$

  • If the tangents at $\mathrm{A}$ and $\mathrm{B}$ meet in $\mathrm{P}$ then $\mathrm{PA}$ and $\mathrm{PB}$ subtends equal angles at the focus $\mathrm{S}$. $(\mathrm{SP})^{2}=\mathrm{SA} \times \mathrm{SB}$

$\triangle \mathrm{SAP} \sim \triangle \mathrm{SPB}$

$\angle \mathrm{PSA}=\angle \mathrm{PSB}$.

  • The area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.

Conormal points:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point and equation of parabola be $\mathrm{y}^{2}=4 \mathrm{ax}$.

Equation of normal is

$y=m x-2 a m-a m^{3}$

If passes through $(\mathrm{h}, \mathrm{k})$ so

$\begin{aligned} & \mathrm{k}=\mathrm{mh}-2 \mathrm{am}-\mathrm{am}^{3} \\ & \mathrm{am}^{3}+2 \mathrm{am}-\mathrm{mh}+\mathrm{k}=0 \end{aligned}$

$\mathrm{am}^{3}+\mathrm{m}(2 \mathrm{a}-\mathrm{h})+\mathrm{k}=0$

Suppose $\mathrm{m} _{1}, \mathrm{~m} _{2}, \mathrm{~m} _{3}$ are the roots of this equation

$\therefore \quad \mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}=0$

$\begin{aligned} & \mathrm{m} _{1} \mathrm{~m} _{2}+\mathrm{m} _{2} \mathrm{~m} _{3}+\mathrm{m} _{3} \mathrm{~m} _{1}=\dfrac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} \\ & \mathrm{m} _{1} \cdot \mathrm{m} _{2} \cdot \mathrm{m} _{3}=-\dfrac{\mathrm{k}}{\mathrm{a}} \end{aligned}$

So maximum three normal say PM, PN, PQ drawn through P. Points M, N, Q are called conormal points.

  • The algebraic sum of ordinates of the conormal points is zero.

Let the coordinates of conormal points be $\mathrm{M}\left(\mathrm{am} _{1}{ }^{2},-2 \mathrm{am} _{1}\right), \mathrm{N}\left(\mathrm{am} _{2}{ }^{2},-2 \mathrm{am} _{2}\right)$ and

$\mathrm{Q}\left(\mathrm{am} _{3}^{2},-2 \mathrm{am} _{3}\right)$. The ordinates of these points

$\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=-2 \mathrm{am} _{1}-2 \mathrm{am} _{2}-2 \mathrm{am} _{3}$

$=-2 \mathrm{a}\left(\mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}\right)$

$=0$

$\Rightarrow \mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=0$

  • Centroid of the triangle formed by conormal points lies on the axis of parabola.

Let coordinates of conormal points be $\mathrm{M}\left(\mathrm{x} _{2}, \mathrm{y} _{1}\right), \mathrm{N}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right) \mathrm{Q}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$

Then centroid is $\left(\dfrac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, \dfrac{\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}}{3}\right)=\left(\dfrac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, 0\right)$

Since sum of ordinates is zero. Therefore centroid lies on the axis of parabola.

  • $\quad$ Normal drown from a point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the parabola are real and distinct if $\mathrm{h}>2 \mathrm{a}$.

Chord of Contact

Let $\mathrm{PA}$ and $\mathrm{PB}$ be tangents drawn through the point $\mathrm{P}(\mathrm{h}, \mathrm{k})$.

Equation of tangent at $\mathrm{A}$ is

$\mathrm{yy} _{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right)$

Equation of chord whose midpoint $\left(x _{1}, y _{1}\right)$ is given :

$\begin{aligned} & \mathrm{S} \equiv \mathrm{y}^{2}-4 \mathrm{ax} \\ & \mathrm{S} _{1} \equiv \mathrm{y} _{1}{ }^{2}-4 \mathrm{ax} \\ & \mathrm{T} \equiv \mathrm{y} _{1}-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right) \end{aligned}$

Equation of $\mathrm{AB}$ is $\mathrm{T}=\mathrm{S}$

PI is incident ray then PS is reflected ray. So any ray incident parallel to axis of the parabola after reflection it passes through focus.

Example: 17 If the chord of contact of tangent from a point $\mathrm{P}$ to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ touches the parabola $\mathrm{x}^{2}=4 \mathrm{by}$. The locus of $\mathrm{P}$ is

(a) Parabola

(b) Hyperbola

(c) ellipse

(d) Circle

Show Answer

Solution: Let the point $\mathrm{P}$ be $(\mathrm{h}, \mathrm{k})$ then equation of chord of contact is $\mathrm{ky}=2 \mathrm{a}(\mathrm{x}+\mathrm{h})$

Now this chord is tangent of parabola $\mathrm{x}^{2}=4 \mathrm{by}$

$\Rightarrow \mathrm{x}^{2}=4 \mathrm{~b} \cdot \dfrac{2 \mathrm{a}}{\mathrm{k}}(\mathrm{x}+\mathrm{h})$

$\Rightarrow \quad x^{2}\left(-\dfrac{8 a b}{k}\right)^{2}-4 x(1)\left(-\dfrac{8 a b h}{k}\right)=0$

$64 \dfrac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{k}^{2}}+\dfrac{32 \mathrm{abh}}{\mathrm{k}}=0$

$\Rightarrow \quad \dfrac{2 \mathrm{ab}}{\mathrm{k}}+\mathrm{h}=0$

$\Rightarrow 2 \mathrm{ab}=-\mathrm{hk}$

Locus $o(h, k)$ is $x y=-2 b$. ie. Hyperbola.

Answer: b

Example: 18 Let $P$ and $Q$ be points $(4,-4)$ and $(9,6)$ on the parabola $y^{2}=4 a(x-b)$. $R$ is a point on the parabola so that area $\triangle \mathrm{PRQ}$ is maximum, then

(a) $\angle \mathrm{PRQ}=90^{\circ}$

(b) the point $\mathrm{R}$ is $(4,4)$

(c) the point $\mathrm{R}$ is $\left(\dfrac{1}{4}, 1\right)$

(d) None of these

Show Answer

Solution: $(4,-4)$ lies on $\mathrm{y}^{2}=4 \mathrm{a}(\mathrm{x}-\mathrm{b}) \Rightarrow 16=4 \mathrm{a}(4-\mathrm{b})$

$(9,6)$ lies on $y^{2}=4 a(x-b) \Rightarrow 36=4 a(9-b)$

$\dfrac{9}{4}=\dfrac{9-b}{4-b} \Rightarrow b=0$

$\mathrm{a}=1$

$\therefore \quad \mathrm{y}^{2}=4 \mathrm{x}$

Let $\mathrm{R}$ be $\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)$

area $\triangle \mathrm{PRQ}=\dfrac{1}{2}\left|\begin{array}{ccc}4 & -4 & 1 \\ 9 & 6 & 1 \\ \mathrm{t}^{2} & 2 \mathrm{t} & 1\end{array}\right|=\dfrac{1}{2}\left|\left\{4(6-2 \mathrm{t})+4\left(9-\mathrm{t}^{2}\right)+18 \mathrm{t}-6 \mathrm{t}^{2}\right\}\right|$

$=\dfrac{1}{2}\left(24-8 t+36-4 t^{2}+18 t-6 t^{2}\right)=\dfrac{1}{2}\left(-10 t^{2}+10 t+60\right)$

$=-5\left(t^{2}-t-6\right)=-5\left(t-\dfrac{1}{2}\right)^{2}+30+\dfrac{5}{4}$

Area is maximum when $\mathrm{t}=\dfrac{1}{2}$

Coordinates of $\mathrm{R}\left(\dfrac{1}{4}, 1\right)$

Answer: c

Example: 19 Minimum area of circle which touches the parabola’s $y^{2}=x^{2}+1$ and $y^{2}=x+1$ is

(a) $\dfrac{9 \pi}{32}$ sq.unit

(b) $\dfrac{\pi}{4}$ sq.unit

(c) $\dfrac{7 \pi}{32}$ sq.unit

(d) $\dfrac{9 \pi}{16}$ sq.unit

Show Answer

Solution: $\mathrm{y}=\mathrm{x}^{2}+1$ and $\mathrm{y}^{2}=\mathrm{x}+1$ are symmetrical about $\mathrm{y}=\mathrm{x}$

tangent at point. $\mathrm{A}$ and $\mathrm{B}$ are parallel to the line $\mathrm{y}=\mathrm{x}$

$\mathrm{y}=\mathrm{x}^{2}+1$ $\hspace {3 cm}\mathrm{y}^{2}=\mathrm{x}+1$

$\dfrac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}=1$ $\hspace {3 cm}\mathrm{y}=\dfrac{1}{2}$

$\mathrm{x}=\dfrac{1}{2}$ $\hspace {4 cm}\mathrm{x}=\dfrac{5}{4}$

$\mathrm{y}=\dfrac{5}{4}$

$\mathrm{A}\left(\dfrac{1}{2}, \dfrac{5}{4}\right) \hspace {3 cm}\mathrm{B}\left(\dfrac{5}{4}, \dfrac{1}{2}\right)$

$\mathrm{AB}=\sqrt{\left(\dfrac{1}{2}-\dfrac{5}{4}\right)^{2}+\left(\dfrac{5}{4}-\dfrac{1}{2}\right)^{2}}=\dfrac{3 \sqrt{2}}{4}$

Area of circle $=\pi \mathrm{r}^{2}=\pi\left(\dfrac{3 \sqrt{2}}{8}\right)^{2}=\dfrac{9 \pi}{32}$ sq.unit

Answer: a

Example: 20 The equation of the common tangents to the parabola $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=-(\mathrm{x}-2)^{2}$ is $/$ are

(a) $\mathrm{y}=4(\mathrm{x}-1)$

(b) $y=0$

(c) $y=-4(x-1)$

(d) $y=-30 x-50$

Show Answer

Solution: Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is tangent to $\mathrm{y}=\mathrm{x}^{2}$

$\therefore \quad \mathrm{mx}+\mathrm{c}=\mathrm{x}^{2} \Rightarrow \mathrm{x}^{2}-\mathrm{mx}-\mathrm{c}=0$ has equal roots $\mathrm{m}^{2}+4 \mathrm{c}=0$

$y=m x-\dfrac{m^{2}}{4}$ is tangent to $y=-(x-2)^{2}$ also

$m x-\dfrac{m^{2}}{4}=-x^{2}+4 x-4$

$\mathrm{x}^{2}+(\mathrm{m}-4) \mathrm{x}+4-\dfrac{\mathrm{m}^{2}}{4}=0$ has equal roots

$\therefore \quad(\mathrm{m}-4)^{2}-4\left(4-\dfrac{\mathrm{m}^{2}}{4}\right)=0$

$\mathrm{m}^{2}+16-8 \mathrm{~m}-16+\mathrm{m}^{2}=0$

$\mathrm{m}^{2}-4 \mathrm{~m}=0$

$\mathrm{m}=0,4$

Equation of tangent are $y=0$ and $y=4 x-4$

Answer: a,b

Example 21. $(3,0)$ is the point from which three normals are drawn to the parabola $y^{2}=4 x$ which meet the parabola in the points $\mathrm{P}, \mathrm{Q}$ and $\mathrm{R}$ then

Column I Column II
i. Area of $\triangle \mathrm{PQR}$ (a) 2
ii. Radius of circum circle of $\triangle \mathrm{PQR}$ (b) $\dfrac{5}{2}$
iii. Centroid of $\triangle \mathrm{PQR}$ (c) $\left(\dfrac{5}{2}, 0\right)$
iv. Circum centre of $\triangle \mathrm{PQR}$ (d) $\left(\dfrac{2}{3}, 0\right)$

Show Answer

Solution: Equation of normal is $\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$

It passes through $(3,0)$, so

$\begin{aligned} & 3 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3}=0 \\ & \mathrm{~m}\left(1-\mathrm{m}^{2}\right)=0 \\ & \mathrm{~m}=0,1,-1 \end{aligned}$

Points are given by $\left(\mathrm{m}^{2},-2 \mathrm{~m}\right)$

i.e. $P(0,0), Q(1,-2), R(1,2)$

area of $\triangle \mathrm{PQR}=\dfrac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & 1\end{array}\right|=$ 2 sq.units

$\mathrm{R}=\dfrac{\mathrm{abc}}{4 \Delta}=\dfrac{\sqrt{5} \cdot \sqrt{5} \cdot 4}{4 \cdot 2}=\dfrac{5}{2}$

Centroid $\triangle \mathrm{PQR}=\left(\dfrac{2}{3}, 0\right)$

Circum centre $\left(\dfrac{5}{2}, 0\right)$

Comprehension based Questions (Exampels 6 to 8)

Comprehension 1

Consider the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ and the parabola $\mathrm{y}^{2}=8 \mathrm{x}$. They intersect at $\mathrm{P}$ and $\mathrm{Q}$ in the first and the fourth quadrants, respectively. Tangents to the circle at $P$ and $Q$ intersect the $x$-axis at $R$ and tangents to the parabola at $\mathrm{P}$ and $\mathrm{Q}$ intersect the $\mathrm{x}$-axis at $\mathrm{S}$.

Example 22. The ratio of the area of the triangles $\mathrm{PQS}$ and $\mathrm{PQR}$ is

(a) $1: \sqrt{2}$

(b) 1:2

(c) $1: 4$

(d) $1: 8$

Show Answer

Solution: Point of intersection of circle & parabola

$\mathrm{x}^{2}+8 \mathrm{x}-9=0$

$(\mathrm{x}+9)(\mathrm{x}-1)=0$

$\mathrm{X}=1,-9$ (not possible)

$\mathrm{Y}= \pm 2 \sqrt{5}$

$\mathrm{P}(1,2 \sqrt{2}), \quad \mathrm{Q}(1,-2 \sqrt{2})$

Tangent to the parabola at $P$ is $2 \sqrt{2 y}=4(x+1)$

$\mathrm{S}(-1,0)$

Tangent to the circle at $P$ is $\quad x+2 \sqrt{2 y}=9$

$\mathrm{R}(9,0)$

$\dfrac{\operatorname{ar} \triangle \mathrm{PQS}}{\operatorname{ar} \triangle \mathrm{PQR}}=\dfrac{\dfrac{1}{2} \mathrm{xPQxST}}{\dfrac{1}{2} \mathrm{xPQxRT}}=\dfrac{\mathrm{ST}}{\mathrm{RT}}=\dfrac{2}{8}=\dfrac{1}{4}$

Answer: c

Example 23. The radius of the circum circle of the triangle PRS is

(a) 5

(b) $3 \sqrt{3}$

(c) $3 \sqrt{2}$

(d) $2 \sqrt{3}$

Show Answer

Solution: area $\triangle \mathrm{PRS}=\Delta=\dfrac{1}{2} \mathrm{xSRxPT}=\dfrac{1}{2} \times 10 \times 2 \sqrt{2}=10 \sqrt{2}$

$\mathrm{R}=\dfrac{\mathrm{abc}}{4 \Delta}=\dfrac{10 \cdot 6 \sqrt{2} \cdot 2 \sqrt{3}}{4.10 \sqrt{2}}=3 \sqrt{3}$

Answer: b

Example 24. The radius of the in circle of the triangle $\mathrm{PQR}$ is

(a) 4

(b) 3

(c) $\dfrac{8}{3}$

(d) 2

Show Answer

Solution: $\mathrm{r}=\dfrac{\Delta}{\mathrm{S}}=\dfrac{\dfrac{1}{2}=\mathrm{PQxRT}}{\dfrac{\mathrm{PR}+\mathrm{RQ}+\mathrm{QP}}{2}}=\dfrac{\dfrac{1}{2} \cdot 4 \sqrt{2} \cdot 8}{\dfrac{6 \sqrt{2}+6 \sqrt{2}+4 \sqrt{2}}{2}}=\dfrac{16 \sqrt{2}}{8 \sqrt{2}}=2$

Answer: d

COMPREHENSION 2 (EXAMPLES 25 TO 27)

If $y=x$ is tangent to the parabola $y=a x^{2}+c$

25. If $a=2$, then the value of $c$ is

(a) $\dfrac{1}{2}$

(b) $\dfrac{1}{4}$

(c) $\dfrac{1}{8}$

(d) 1

26. If $(1,1)$ is point of contact then ’ $a$ ’ is

(a) 1

(b) $\dfrac{1}{2}$

(c) $\dfrac{1}{3}$

(d) $\dfrac{1}{4}$

27. If $c=2$ then point of contact is

(a) $(4,4)$

(b) $(2,2)$

(c) $(8,8)$

(d) $\left(\dfrac{1}{2}, \dfrac{1}{2}\right)$

Show Answer

Solution: $y=a x^{2}+c$

$\dfrac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{ax}=1 \quad$ Point of contact of the tangent is $\left(\dfrac{1}{2 \mathrm{a}}, \dfrac{1}{4 \mathrm{a}}+\mathrm{c}\right)$ since it lies on $\mathrm{y}=\mathrm{x}$

$\therefore \quad c=\dfrac{1}{4 \mathrm{a}}$ thus $\mathrm{c}=\dfrac{1}{8}$ for $\mathrm{a}=2$

Answer: c

If $(1,1)$ is poit of contact then $\mathrm{a}=\dfrac{1}{2}$

Answer: b

If $\mathrm{c}=2$, then point of contact is $\left(\dfrac{1}{2 \mathrm{a}}, \dfrac{1}{4 \mathrm{a}}+2\right)$

Since it lies on the line $y=x$,

$\dfrac{1}{2 a}=\dfrac{1}{4 a}+2 \Rightarrow a=\dfrac{1}{8}$

$\therefore \quad$ point of contact is $(4,4)$

Exercise

1. The point $\mathrm{P}$ on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ for which $|\mathrm{PR}-\mathrm{PQ}|$ is maximum, where $\mathrm{R}(-\mathrm{a}, 0), \mathrm{Q}(0, \mathrm{a})$ is

(a) $(4 a,-4 a)$

(b) $(4 a, 4 a)$

(c) $(a, 2 a)$

(d) $(\mathrm{a},-2 \mathrm{a})$

Show Answer Answer: c

2. The shortest distance between the parabola $y^{2}=4 x$ and the circle $x^{2}+y^{2}+6 x-12 y+20=0$ is

(a) $4 \sqrt{2}-5$

(b) $4 \sqrt{2}+5$

(c) $3 \sqrt{2}+5$

(d) $3 \sqrt{2}-5$

Show Answer Answer: a

3. If normals are drawn from a point $p(h, k)$ to the parabola $y^{2}=4 a x$, then the sum of the intercepts which the normals act off from the axis of the parabola is

(a) $4(\mathrm{~h}+0)$

(b) $3(\mathrm{~h}+\mathrm{c})$

(c) $2(\mathrm{~h}+\mathrm{a})$

(d) $(\mathrm{h}+\mathrm{a})$

Show Answer Answer: c

4. If $a \neq 0$ and the line $2 p x+3 q y+4 r=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then

(a) $\mathrm{r}^{2}+(3 \mathrm{p}+2 \mathrm{q})^{2}=0$

(b) $r^{2}+(2 p+3 q)^{2}=0$

(c) $\mathrm{r}^{2}+(3 \mathrm{p}-2 \mathrm{q})^{2}=0$

(d) $r^{2}+(2 p-2 q)^{2}=0$

Show Answer Answer: b

5. The equation of the tangent at the vertex of the parabola $x^{2}+4 x+2 y=0$ is

(a) $\mathrm{x}=2$

(b) $x=2$

(c) $y=2$

(d) $y=2$

Show Answer Answer: d

6. The common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 a x$ and $x^{2}=32 a y$ is

(a) $x+2 y-4 a=0$

(b) $x+2 y+4 a=0$

(c) $x-2 y+4 a=0$

(d) $x-2 y-4 a=0$

Show Answer Answer: b

7. The shortest distnae between the parabolas $\mathrm{y}^{2}=4 \mathrm{x}$ and $\mathrm{y}^{2}=2 \mathrm{x}-6$ is

(a) $\sqrt{5}$

(b) 2

(c) 3

(d) none of these

Show Answer Answer: a

8. The largest value of a for which the circle $x^{2}+y^{2}=a^{2}$ falls totally in the interior of the parabola $y^{2}=4(x+4)$ is

(a) 4

(b) $4 \sqrt{3}$

(c) $3 \sqrt{3}$

(d) $2 \sqrt{3}$

Show Answer Answer: d

Multiple choice questions with one or more than one correct answer.

9. Let $P\left(x _{1}, y _{1}\right)$ and $Q\left(x _{2}, y _{2}\right), y _{1}<0, y _{2}, 0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y=4$. The equations of parabolas with latus rectum $\mathrm{PQ}$ are

(a) $x^{2}+2 \sqrt{3} \mathrm{y}=3+\sqrt{3}$

(b) $x^{2}-2 \sqrt{3} y=3+\sqrt{3}$

(c) $x^{2}+2 \sqrt{3} y=3-\sqrt{3}$

(d) $x^{2}-2 \sqrt{3} y=3-\sqrt{3}$

Show Answer Answer: b, c

10. The tangent $\mathrm{PT}$ and the normal $\mathrm{PN}$ to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at a point $\mathrm{P}$ on it meet its axis at point $\mathrm{T}$ and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose

(a) vertex is $\left(\dfrac{2 \mathrm{a}}{3}, 0\right)$

(b) directrix is $x=0$

(c) latus rectum is $\dfrac{2 \mathrm{a}}{3}$

(d) focus is $(a, 0)$

Show Answer Answer: a, d

11. Match the following :

Consider the parabola $\mathrm{y}^{2}=12 \mathrm{x}$

Column I Column II
(a) Equation of tangent can be p. $2 x+y-6=0$
(b) Equation of normal can be q. $x-2 y-12=0$
(c) Equation of chord of contact w.r.t. any point on the directrix r. $2 x-y=36$
(d) Equation of chord which subtends right angle at the vertex s. $3 x-y+1=0$
Show Answer Answer: $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{D} \rightarrow \mathrm{q}$
Assertion and Reasoning

12. Statement 1 : The curve $y=\dfrac{x^{2}}{2}+x+1$ is symmetric with respect to the line $x=1$.

Statement 2 : A parabola is symmetric about its axis.

(A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanations for statement 1 .

(B) Statement 1 is True, statement 2 is true, statement 2 is not a correct explanation for statement 1 .

(C) Statement 1 is true, statement 2 is false.

(D) Statement 1 is false, statement 2 is true.

Show Answer Answer: A


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ