Trigonometric - Trigonometric Functions (Lecture-02)

1. Values of trigonometrical ratios of some particular angles

(i) sin712=42622

cos712=4+2+622

tan712=(32)(21)

cot712=(3+2)(2+1)

(ii) sin15=cos75=3122

cos15=sin75=3+122

tan15=cot75=23

cot15=tan75=2+3

(iii) sin2212=1222

cos2212=122+2

tan2212=21

cot2212=2+1

(iv) sin18=cos72=514

cos18=sin72=10+254

sin36=cos54=10254

cos36=sin54=5+14

(v) cos9=12(1+sin18+1sin18)

(vi) cos27=12(1+cos36+1cos36)

2. Conditional identities

If A,B,C are angles of a triangle (i.e. A+B+C=π ) then

  • tanA+tanB+tanC=tanAtanBtanC
  • cotAcotB+cotBcotC+cotCcotA=1
  • tanA2tanB2+tanB2tanC2+tanC2tanA2=1
  • cotA2+cotB2+cotC2=cotA2cotB2cotC2
  • sin2 A+sin2 B+sin2C=4sinAsinBsinC
  • cos2 A+cos2 B+cos2C=14cosAcosBcosC
  • sinA+sinB+sinC=4cosA2cosB2cosC2
  • cosA+cosB+cosC=1+4sinA2sinB2sinC2
3. Trigonometric ratios of sum of more than three angles.
  • sin(A1+A2 ………………..+An)=cosA1cosA…………………cosAn(S1S3+S5.)

  • cos(A1+A2…………………..+An)=cosA1cosA………………cosAn(1S2+S4S6+..)

  • tan(A1+A………………..+An)=S1S3+S51S2+S4S6+..

where S1=tanA1= sum of tangents of angles

S2=tanA1tanA2= sum of tangents taken two at a time etc.

In particular, if A1=A2=………………..An=A, then

S1=ntanA;S2=nC2tan2 A;S3=nC3tan3 A etc.

sinnA=cosnA(nC1tanAnC3tan3 A++C5tan5 A………………..)

cosnA=cosnA(1nC2tan2 A+nC4tan4 A)

tannA=nC1tanAnC3tan3 A+nC5tan5 A.1nC2tan2 A+nC4tan4 A.

Solved Examples

1. If f(x)=cotx1+cotx and α+β=5π4, then the value of f(α)f(β) is

(a) 2

(b) 12

(c) 12

(d) None of these

Show Answer

Solution:

f(α)f(β)=cotα1+cotαcotβ1+cotβ=11+tanα11+tanβ

=11+tanα11+tan(π+π4α)=11+tanα×11+1tanα1+tanα

=11+tanα1+tanα2=12

Answer: (c)

2. The value of tan81tan63tan27+tan9 equals

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer

Solution:

(tan81+tan9)(tan63+tan27)

=(cot9+tan9)(cot27+tan27)

=1sin9cos91sin27cos27

=2sin182sin54=2×4512×45+1

=8{5+15+1}51=8×24=4

Answer: (d).

3. The number of integral values of k for which the equation 7cosx+5sinx=2k+1 has a unique solution is

(a) 4

(b) 8

(c) 10

(d) 12

Show Answer

Solution:

774cosx+574sinx=2k+174sin(x+α)=2k+174 Now 12k+1741

7412k74124.8k3.8k=4,3,2,1,0,1,2,3 i.e. 8 values. 

Answer: (b)

4. If sinxsiny=12 and cosxcosy=32 where x,y(0,π2) then tan(x+y)=

(a) 13

(b) 14

(c) 17

(d) 15

Show Answer

Solution:

sin2x+cos2x=1

14sin2y+94cos2y=1

cosy=322 and tany =53

Also sinx=542 and tanx=533

tan(x+y)=tanx+tany1tanxtany=533+53153353

=5+35953

=454×3=15

Answer: (d)

5. If α+β=π2 and β+γ=α, then tanα is equal to

(a) 2(tanβ+tanγ)

(b) tanβ+tanγ

(c) tanβ+2tanγ

(d) 2tanβ+tanγ

Show Answer

Solution:

γ=αβ

tanγ=tan(αβ)=tanαtanβ1+tanαtanβ

tanγ=tanαtanβ1+tanαtan(π2α)tanγ=tanαtanβ1+12tanγ=tanαtanβtanα=tanβ+2tanγ

Answer: (c)

6. r=17tan2rπ16=

(a) 34

(b) 35

(c) 37

(d) None of these

Show Answer

Solution: Given series can be simplified to

(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+1

General pattern is tan2θ+cot2θ

=sin4θ+cos4θsin2θcos2θ=12sin2θcos2θsin2θcos2θ=4sin22θ2

=4×21cos4θ2=81cos4θ2

(81cosπ42)+(81cosπ22)+(81cos3π42)+1

=82212+82+822+12+1

=8221+822+16+8+1

=16+82+168221+3=32+3=35

Answer: (b)

Exercise

1. If pn+1=12(1+pn), then cos(1p02p1p2p3) is equal to

(a) 1

(b) -1

(c) p0

(d) 1p0

Show Answer Answer: c

2. If A,B,C are acute positive angles such that A+B+C=π and cotAcotBcotC=k, then

(a) k133

(b) k133

(c) k<19

(d) k>13

Show Answer Answer: a

3. If xy=1, then x+y1xy=

(a) 1xyz

(b) 4xyz

(c) xyz

(d) None of these

Show Answer Answer: a

4. The value of cot16cot44+cot44cot76cot76cot16 is

(a) 3

(b) 13

(c) 13

(d) -3

Show Answer Answer: a

5. The number of solutions of tan(5πcosθ)=cot(5πsinθ) for θ in (0,2π) is

(a) 28

(b) 14

(c) 4

(d) 2

Show Answer Answer: a

6. If cosx=tany,cosy=tanz and cosz=tanx, then a value of sinx is equal to

(a) 2cos18

(c) sin18

(b) cos18

(d) 2sin18

Show Answer Answer: d

7. Let n be an odd integer. If sinnθ=r=0nbrsinrθ,θ, then

(a) b0=1, b1=3

(c) b0=1 b1=n

(b) b0=0, b1=n

(d) b0=0, b1=n23n+3

Show Answer Answer: b

8. If eπ/2<θ<π2, which is larger, cos(logeθ) or loge(cosθ)

(a) cos(logeθ)

(b) loge(cosθ)

(c) both are equal

(d) None of these

Show Answer Answer: a

9. r=1n1(nr)cos2rπn for n3 is

(a) n2

(b) n

(c) (n3)

(d) None of these

Show Answer Answer: a

10.* Match the following :-

Column I Column II
(a) In an acute angled ABC, the least values of secA&tan2A are λ and μ respectively, then (p) λμ=2
(b) In ABC, the least values of cosec(A/2) &sec2( A/2) and λ&μ respectively then (q) μλ=3
(c) In ABC, the least values of cosec(A2)cosec(B2)cosec(C2) &cosec2 A are λ&μ respectively, then (r) λμ=4
(d) (s) 3λ2μ=0
(t) 2λ3μ=0
Show Answer Answer: aq,s;bp,t;cr

11. In any ABC, the minimum value of sinAsinB+sinCsinA is

(a) 3

(b) 0

(c) 4

(d) None of these

Show Answer Answer: a

12. If cosπ7,cos3π7,cos5π7, are the roots of the equation 8x34x24x+1=0.

On the basis of above information, answer the following questions :-

(i) The value of secπ7+sec3π7+sec5π7 is

these

(a) 2

(b) 4

(c) 8

(d) None of

(ii) The value of sinπ14sin3π14sin5π14 is

(a) 14

(b) 18

(c) 74

(d) 78

(iii) The value of cosπ14cos3π14cos5π14 is

(a) 14

(b) 18

(c) 74

(d) 78

(iv) The equation whose roots arc2tan2π7,tan23π7,&tan25π7, is

(a) x335x2+7x21=0

(b) x335x2+21x7=0

(c) x321x2+35x7=0

(d) x321x2+7x35=0

(v) the value of r=13tan2(2r17)r=13cot2(2r17) is

(a) 15

(b) 105

(c) 21

(d) 147

Show Answer Answer: (i) b (ii) b (iii) d (iv) c (v) b

13. If a=sinπ18sin5π18sin7π18, and x is the solution of the equation y=2[x]+2 and y=3[x2], then a=

(a) [x]

(b) 1[x]

(c) 2[x]

(d) [x]2

Show Answer Answer: b

14. If tanα,tanβ,tanγ are the roots of x3p2r=0, then the value of (1+tan2α)(1+tan2β)(1+tan2γ) is equal to

(a) (pr)2

(b) 1+(pr)2

(c) 1(pr)2

(d) None of these

Show Answer Answer: b

15. If tanα is an integral solution of 4x216x+15<0 and cosβ is the slope of the bisector of the angle in the first quadrant between the x&y axes, then the value of sin(α+β):sin(αβ) is equal to

(a) -1

(b) 0

(c) 1

(d) 2

Show Answer Answer: c