Vector - Vector Triple Product (Lecture-01)

Vector Triple Product

Let $\vec{a}, \vec{b}, \vec{c}$ be any three vectors, then the expression $\vec{a} \times(\vec{b} \times \vec{c})$ is a vector and is called a vector triple product.

Geometrically: $\vec{a} \times(\vec{b} \times \vec{c})$ is a vector that lies in the plane of $\vec{b}$ and $\vec{c}$ and perpendicular to $\vec{a}$.

  • $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
  • $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} . \vec{c}) \vec{b}-(\vec{b} . \vec{c}) \vec{a}$
  • It is clear that $\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}$
  • $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
  • $(\vec{a} \times \vec{b}) \times \vec{a}=\vec{a} \times(\vec{b} \times \vec{a})=\vec{a} \times \vec{b} \times \vec{a}$
  • $\hat{\mathrm{i}} \times(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}} \times(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \times(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=\overrightarrow{0}$
  • $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$ where $\vec{a}$ is any vector.

Scalar Product of four vectors

$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left|\begin{array}{ll}\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}\end{array}\right|$

Vector product of four Vectors

$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\left\{\begin{array}{l}{[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}} \\ {[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}}\end{array}\right\}$

  • $\left[\begin{array}{lll} \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}} \end{array}\right]=\left[\begin{array}{lll} \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}} \end{array}\right]^2$

  • $\quad(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ if $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar.

Reciprocal system of Vectors

If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are two sets of non coplanar vectors such that $\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}$ $=1$, then the two systems are called reciprocal system of vectors.

Note :

$\vec{a}^{\prime}=\dfrac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{b}^{\prime}=\dfrac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{c}=\dfrac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$

Properties

(i) $\overrightarrow{\mathrm{a}}=\dfrac{\overrightarrow{\mathrm{b}^{\prime}} \times \overrightarrow{\mathrm{c}}^{\prime}}{\left[\overrightarrow{\mathrm{a}}^{\prime} \overrightarrow{\mathrm{b}}^{\prime} \overrightarrow{\mathrm{c}}^{\prime}\right]} ; \overrightarrow{\mathrm{b}}=\dfrac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}^{\prime}}{\left[\overrightarrow{\mathrm{a}}^{\prime} \overrightarrow{\mathrm{b}}^{\prime} \mathrm{c}^{\prime}\right]} ; \overrightarrow{\mathrm{c}}=\dfrac{\overrightarrow{\mathrm{a}^{\prime} \times \overrightarrow{\mathrm{b}}^{\prime}}}{\left[\overrightarrow{\mathrm{a}}^{\prime} \overrightarrow{\mathrm{b}}^{\prime} \mathrm{c}^{\prime}\right]}$

i.e. reciprocal vectors of $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are $\vec{a}, \vec{b}, \vec{c}$

(ii) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\left[\begin{array}{lll}\vec{a}^{\prime} & \vec{b}^{\prime} & \vec{c}^{\prime}\end{array}\right]=1$

(iii) $\vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{c}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=\vec{c} \cdot \vec{a}^{\prime}=\vec{c} \cdot \vec{b}^{\prime}=0$

(iv) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{a}}^{\prime}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{b}^{\prime}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{c}}^{\prime}=\overrightarrow{0}$

(v) Orthonormal Vectors $\hat{i}, \hat{j}, \hat{k}$ are self reciprocal vectors.

Solved Examples

1. The value of $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$ is

(a) $\vec{a}+\vec{b}+\vec{c}$

(b) $3(\vec{b} \cdot \vec{c}) \vec{a}$

(c) $\overrightarrow{0}$

(d) $\vec{a} \cdot \vec{b}+\vec{b} \vec{c}+\vec{c} \cdot \vec{a}$

Show Answer

Solution

$\begin{aligned} & \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\ & \vec{b} \times(\vec{c} \times \vec{a})=(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a} \\ & \vec{c} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \end{aligned}$

Adding all three equations, we get

$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a}) \vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$

Answer (c)

2. $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})$ is equal to

(a) $3 \vec{a}$

(b) $2 \vec{a}$

(c) $\overrightarrow{0}$

(d) $\vec{a}$

Show Answer

Solution

$\begin{aligned} & \hat{i} \times(\vec{a} \times \hat{i})=(\hat{i} \cdot \hat{i}) \vec{a}-(\hat{i} \cdot \vec{a}) \hat{i} \\ & \hat{j} \times(\vec{a} \times \hat{j})=(\hat{j} \cdot \hat{j}) \vec{a}-(\hat{j} \cdot \vec{a}) \hat{j} \\ & \hat{k} \times(\vec{a} \times \hat{k})=(\hat{k} \cdot \hat{k}) \vec{a}-(\hat{k} \cdot \vec{a}) \hat{k} \end{aligned}$

On Adding, we get

$$ \begin{aligned} \hat{\mathrm{i}} \times(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{i}})+\hat{\mathrm{j}} \times(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{j}})+\hat{\mathrm{k}} \times(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{k}}) & =3 \overrightarrow{\mathrm{a}}-{(\hat{\mathrm{i}} \cdot \overrightarrow{\mathrm{a}}) \hat{\mathrm{i}}+(\hat{\mathrm{j}} \cdot \overrightarrow{\mathrm{a}}) \hat{\mathrm{j}}+(\hat{\mathrm{k}} \cdot \overrightarrow{\mathrm{a}}) \hat{\mathrm{k}}} \\ & =3 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{a}} \\ & =2 \vec{a} \end{aligned} $$

Answer (b)

3. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=$

(a) $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

(b) $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

(c) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

(d) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$

Show Answer

Solution

$\begin{aligned} & (\vec{a} \times \vec{b}) .\{(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})\} \\ & =(\vec{a} \times \vec{b}) .\left\{\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right] \vec{c}-0\right\} \\ & =\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{a} \end{array}\right]\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right] \\ & =\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right] \end{aligned}$

$=\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]^{2}$

Answer (d)

4. If $\vec{a}=3 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+\hat{j}+3 \hat{k}$ then which of the following in true.

(a) $(\vec{a} \times \vec{b}) \cdot \vec{c}=30$

(b) $(\vec{a} \cdot \vec{b}) \times \vec{c}=\hat{i}-\hat{j}-3 \hat{k}$

(c) $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$

(d) $(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{a}}=-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

Show Answer

Solution

$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 3 & -1 & 1 \\ 1 & 3 & -1 \end{array}\right|=-2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}$

$(\vec{a} \times \vec{b}) \cdot \vec{c}=2+4+30=36$

(a) is wrong.

(b) is meaningless.

$\begin{aligned} & \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\ & =-\overrightarrow{\mathrm{b}}-(-1) \overrightarrow{\mathrm{c}} \\ & =-\vec{b}+\vec{c} \\ & =-2 \hat{i}-2 \hat{j}+4 \hat{k} \\ & \text { (c) is wrong } \end{aligned}$

$(\vec{b} \times \vec{c}) \times \vec{a}=-{\vec{a} \times(\vec{b} \times \vec{c})}$

$=-(-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}=-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

Answer (d)

5. If $\vec{a}, \vec{b}$, $\vec{c}$ be three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\dfrac{1}{2} \vec{b}$, then angle between $\vec{a}$ and $\vec{c}$ is

(a) $\dfrac{\pi}{2}$

(b) 0

(c) $\dfrac{\pi}{6}$

(d) $\dfrac{\pi}{3}$

Show Answer

Solution

$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\dfrac{1}{2} \vec{b}-0 \vec{c}$

$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\dfrac{1}{2}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$

$|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{c}}| \cos \theta=\dfrac{1}{2}$

(where $\theta$ is the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{c}}$ )

$\begin{aligned} \cos \theta & =\dfrac{1}{2} \\ \theta & =\dfrac{\pi}{3} \end{aligned}$

Answer (d)

6. $\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))$ is equal to

(a) $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$

(b) $(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})$

(c) $(\vec{b} \cdot \vec{b})(\vec{b} \times \vec{a})$

(d) None of these

Show Answer

Solution

$\begin{aligned} \vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b})) & =\vec{a} \times((\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b} \\ & =(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{a})-(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b}) \\ & =\overrightarrow{0}+(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a}) \\ & =(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a}) \end{aligned}$

Answer (a)

7. Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ is $30^{\circ}$ the $|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}|=$

(a) $\dfrac{2}{3}$

(b) $\dfrac{3}{2}$

(c) 2

(d) 3

Show Answer

Solution

$|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$

Squaring both side

$\begin{aligned} & |\overrightarrow{\mathrm{c}}|^{2}+|\overrightarrow{\mathrm{a}}|^{2}-2 \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=8 \\ & |\overrightarrow{\mathrm{c}}|^{2}+9-2|\overrightarrow{\mathrm{c}}|=8 \\ & |\overrightarrow{\mathrm{c}}|^{2}-2|\overrightarrow{\mathrm{c}}|+1=0 \\ & (|\overrightarrow{\mathrm{c}}|-1)^{2}=0 \\ & |\overrightarrow{\mathrm{c}}|=1 \\ & \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{array}\right|=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}} \end{aligned}$

$\therefore|\vec{a} \times \vec{b}|=3$

$|(\vec{a} \times \vec{b}) \times \vec{c}|=|\vec{a} \times \vec{b}||\vec{c}| \sin 30^{\circ}$

$=3.1 . \dfrac{1}{2}$

$=\dfrac{3}{2}$

Answer (b)

Exercise

1. If $\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}$ are three non coplanar unit vectors and $\alpha, \beta, \gamma$ are the angles between $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$; and $\vec{v}$ and $\vec{w} ; \vec{w}$ and $\vec{u}$ respectively and $\vec{x}, \vec{y}, \vec{z}$ are unit vectors along the bisectors of the angles $\alpha, \beta, \gamma$ respectively. If $\left[\begin{array}{lll}\vec{x} \times \vec{y} & \vec{y} \times \vec{z} & \vec{z} \times \vec{x}\end{array}\right]=k\left[\begin{array}{ll}\vec{u} \quad \vec{v} & \vec{w}\end{array}\right]^{2} \sec ^{2} \dfrac{\alpha}{2} \sec ^{2} \dfrac{\beta}{2} \sec ^{2} \dfrac{\gamma}{2}$ then $\mathrm{k}=$

(a) 2

(b) 16

(c) $\dfrac{1}{16}$

(d) None of these

Show Answer Answer: c

2. A mirror and a source of light are situated at the origin $\mathrm{O}$ and a point on $\mathrm{OX}$ respectively. A ray of light from the source strikes the mirror and is reflected. If d. $\mathrm{r}^{\prime} \mathrm{s}$ of the normal to the plane of mirror are $1,-1,1$, then the d. $\mathrm{c}^{\prime} \mathrm{s}$ of the reflected ray are

(a) $\dfrac{1}{3}, \dfrac{2}{3}, \dfrac{2}{3}$

(b) $\dfrac{1}{3}, \dfrac{-2}{3}, \dfrac{-2}{3}$

(c) $\dfrac{-1}{3}, \dfrac{-2}{3}, \dfrac{-2}{3}$

(d) $\dfrac{-1}{3}, \dfrac{-2}{3}, \dfrac{2}{3}$

Show Answer Answer: d

3. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the points $A, B, C$ respectively. Let $\alpha, \beta$ and $\gamma$ the inclinations between $\vec{b}, \vec{c} ; \vec{a}, \vec{b}$ and $\vec{a}, \vec{c}$. Then the volume $V$ of the tetrahedron OABC is given by

(a) $\mathrm{V}^{2}=\dfrac{\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{36}\left|\begin{array}{ccc}1 & \cos \beta & \cos \gamma \\ \cos \beta & 1 & \cos \alpha \\ \cos \gamma & \cos \alpha & 1\end{array}\right|$

(b) $\mathrm{V}^{2}=\dfrac{\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{6}\left|\begin{array}{ccc}1 & \cos \beta & \cos \gamma \\ \cos \beta & 1 & \cos \alpha \\ \cos \gamma & \cos \alpha & 1\end{array}\right|$

(c) $\mathrm{V}^{2}=\dfrac{\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{36}\left|\begin{array}{ccc}0 & \cos \beta & \cos \gamma \\ \cos \beta & 0 & \cos \alpha \\ \cos \gamma & \cos \alpha & 0\end{array}\right|$

(d) $\mathrm{V}^{2}=\dfrac{\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}}{36}\left|\begin{array}{ccc}1 & \sin \beta & \sin \gamma \\ \sin \beta & 1 & \sin \alpha \\ \sin \gamma & \sin \alpha & 1\end{array}\right|$

Show Answer Answer: a

4.* $\vec{a}$ and $\vec{b}$ are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to $\vec{a}$ is

(a) $\dfrac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$

(b) $\dfrac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$

(c) $\dfrac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^{2}} \vec{a}-\vec{b}$

(d) None of these

Show Answer Answer: a, b

5. Let $\vec{a}$ and $\vec{b}$ be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b})$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is

(a) $|\overrightarrow{\mathrm{u}}|$

(b) $|\overrightarrow{\mathrm{u}}|+|\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{a}}|$

(c) $|\overrightarrow{\mathrm{u}}|+|\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{b}}|$

(d) $|\overrightarrow{\mathrm{u}}|+\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})$

Show Answer Answer: c

6. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}+4 \hat{k}$. A vector $\vec{r}$ satisfying $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{a}}=0$ is

(a) $-2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

(b) $-2 \hat{i}+\hat{j}+3 \hat{k}$

(c) $-2 \hat{i}-\hat{j}+5 \hat{k}$

(d) $\hat{\mathrm{i}}-5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$

Show Answer Answer: d

7. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and let $\overrightarrow{\mathrm{r}}$ be a variable vector such that $\overrightarrow{\mathrm{r}} . \hat{\mathrm{i}}, \overrightarrow{\mathrm{r}} . \hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{r}} . \hat{\mathrm{k}}$ are positive integers. If $\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{a}} \leq 12$, then the total number of such vectors is

(a) ${ }^{12} \mathrm{C} _{9}-1$

(b) ${ }^{12} \mathrm{C} _{3}$

(c) ${ }^{12} \mathrm{C} _{8}$

(d) None of these

Show Answer Answer: b

8. If $\vec{a}$ and $\vec{b}$ are unit vectors, then the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is

(a) 2

(b) 4

(c) $2 \sqrt{2}$

(d) $\sqrt{2}$

Show Answer Answer: c

9.* If the magnitude of the moment about the point $\hat{j}+\hat{k}$ of a force $\hat{i}+\alpha \hat{j}-\hat{k}$ acting through the point $\hat{i}+\hat{j}$ is $\sqrt{8}$, then the value of $\alpha$ is

(a) 1

(b) 2

(c) 3

(d) -2

Show Answer Answer: b, d

10. Read the paragraph and answer the following questions.

Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{a} _{1}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{a} _{2}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$.

Let $\vec{a} _{1}$ be the projection of $\vec{a}$ and $\vec{b}$ the projection of $\vec{a} _{1}$ on $\vec{c}$, then

(i) $\overrightarrow{\mathrm{a}} _{2}$ is equal to

(a) $\dfrac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$

(b) $\dfrac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$

(c) $\dfrac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

(d) $\dfrac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

(ii) $\overrightarrow{\mathrm{a}} _{1} \cdot \overrightarrow{\mathrm{b}}$ is equal to

(a) -41

(b) $\dfrac{-41}{7}$

(c) 41

(d) 287

(iii) Which of the following is true?

(a) $\vec{a} \& \vec{a} _{2}$ are collinear

(b) $\overrightarrow{\mathrm{a}} _{1}$ and $\overrightarrow{\mathrm{c}}$ are collinear

(c) $\vec{a}, \vec{a} _{1}, \vec{b}$ are coplanar

(d) $\vec{a}, \vec{a} _{1}, \vec{a} _{2}$ are coplanar

Show Answer Answer: (i) b (ii) a (iii) c

11. Match the following.

Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ unit vectors such that $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=\cos \theta, \vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=\cos \alpha$. Then

Column I Column II
(a) $\dfrac{\pi}{2}$ (p) $\dfrac{\pi}{4}$
(b) $\dfrac{\pi}{3}$ (q) $\cos ^{-1} \dfrac{1}{\sqrt{3}}$
(c) $\dfrac{2 \pi}{3}$ (r) $\cos ^{-1} \sqrt{\dfrac{2}{3}}$
(d) $\cos ^{-1} \dfrac{1}{4}$ (s) $\dfrac{\pi}{2}$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{q} ; \mathrm{b} \rightarrow \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{p}$

12. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ are the unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\dfrac{1}{2}$, then

(a) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar

(b) $\vec{a}, \vec{b}, \vec{d}$ are non coplanar

(c) $\vec{b}, \vec{d}$ are non parallel

(d) $\vec{a}, \vec{d}$ are parallel and $\vec{b}, \vec{c}$ are parallel

Show Answer Answer: c


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ