Vector - Dot and Cross product (Lecture-02)

A vector has magnitude and direction and it is represented by a directed line segment. Its magnitude is denoted by $|\vec{a}|$. Unit vector along $\vec{a}$ is $\hat{a}=\dfrac{\vec{a}}{|\vec{a}|}$

Note : Zero vector has no definite direction

Addition of Vectors (Parallelogram Law)

If $\vec{a} \& \vec{b}$ are two adjacent sides of a parallelogram, then their sum $\vec{a}+\vec{b}$ represents the diagonal of the parallelogram through the common points

Note: Vector addition is commutative $\&$ associative

i.e. $\vec{a}+\vec{b}=\vec{a}+\vec{b}$ and $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$

Angular bisectors

The internal bisector of angle between $\vec{a} \& \vec{b}$ is along $\dfrac{\vec{a}}{|\vec{a}|}+\dfrac{\vec{b}}{|\vec{b}|}$ Hence the internal bisector is given by $\lambda(\hat{a}+\hat{b})$ and the external bisector of the angle is along $\dfrac{\vec{a}}{|\vec{a}|}-\dfrac{\vec{b}}{|\vec{b}|}$ Hence external bisector is given by $\lambda(\hat{a}-\hat{b})$. These bisectors are perpendicular to each other.

Orthonormal Vectors

Orthonormal Vectors are unit vectors along positive X, $\mathrm{Y} \& \mathrm{Z}$ axes.

Note :

Let $\vec{a}=\overrightarrow{\mathrm{OA}} \& \vec{b}=\overrightarrow{\mathrm{OB}} \cdot \& \overrightarrow{\mathrm{OC}}=p \overrightarrow{\mathrm{a}}+\mathrm{q} \vec{b}$ then

(i) $\mathrm{C}$ lies inside $\triangle$ OAB if $p, q>0$ \& $p+q<1$

(ii) $\mathrm{C}$ lies outside $\triangle \mathrm{OAB}$ but inside $\angle \mathrm{AOB}$ if $\mathrm{p}, \mathrm{q}>0$ \& $\mathrm{p}+\mathrm{q}>1$

(iii) $\mathrm{C}$ lies outside $\triangle \mathrm{OAB}$ but inside $\angle \mathrm{OAB}$ if $\mathrm{p}<0, \mathrm{q}>0$ and $\mathrm{p}+\mathrm{q}<1$

(iv) C lies outside $\triangle \mathrm{OAB}$ but inside $\angle \mathrm{OBA}$ if $\mathrm{p}>0, \mathrm{q}<0$ and $\mathrm{p}+\mathrm{q}<1$

Note : Let $\mathrm{P}$ be the point $\left(\mathrm{x} _{1}, \mathrm{y} _{1}, \mathrm{z} _{1}\right)$. If the coordinate system is rotated about

(i) $x$ axis through an angle $\theta$, then new coordinates of $P$ are

$\left(\mathrm{x} _{1}, \mathrm{y} _{1} \cos \theta+\mathrm{z} _{1} \sin \theta,-\mathrm{y} _{1} \sin \theta+\mathrm{z} _{1} \cos \theta\right)$

(ii) $\mathrm{y}$-axis through an angle $\theta$, then new coordinates of $\mathrm{Q}$ are $\left(-\mathrm{z} _{1} \sin \theta+\mathrm{x} _{1} \cos \theta, \mathrm{y} _{1}, \mathrm{z} _{1} \cos \theta+\mathrm{x} _{1} \sin \theta\right)$

(iii) $\mathrm{z}$ axis through an angle $\theta$, then the new coordinates of $\mathrm{P}$ are $\left(\mathrm{x} _{1} \cos \theta+\mathrm{y} _{1} \sin \theta,-\mathrm{x} _{1} \sin \theta+\mathrm{y} _{1} \cos \theta, \mathrm{z} _{1}\right)$

Scalar (dot) Product

For two non zero vectors $\vec{a} \& \vec{b}$, dot product $\vec{a} \cdot \vec{b}=a b \cos \theta$ where $a=|\vec{a}| ; b=|\vec{b}| ; \theta$ is the

angle between $\vec{a} \& \vec{b}$.

Note:

$\theta$ is acute $\Leftrightarrow \vec{a} \cdot \vec{b}>0$

$\theta$ is obtuse $\Leftrightarrow \vec{a} . \vec{b}<0$

Properties

(i) $\quad \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}=|\overrightarrow{\mathrm{a}}|^{2}$

(ii) $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$

$\hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0$

(iv) $\vec{a} \cdot \vec{b}=a _{1} b _{1}+a _{2} b _{2}+a _{3} b _{3}$ where $\vec{a}=a _{1} \hat{i}+a _{2} \hat{j}+a _{3} \hat{k}$ and $\vec{b}=b _{1} \hat{i}+b _{2} \hat{j}+b _{3} \hat{k}$

(v) $\vec{a} \cdot(\vec{b} \pm \vec{c})=\vec{a} \cdot \vec{b} \pm \vec{a} \cdot \vec{c}$

(vi) $\vec{a} \cdot \vec{b}=0$ if and only if $\vec{a} \perp \vec{b}$

(vii) Length of projection of $\vec{a}$ on $\vec{b}=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ and orthogonal projection of $\vec{a}$ on $\vec{b}=\dfrac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$

(viii) $\cos \theta=\dfrac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{\mathrm{ab}}=\dfrac{\mathrm{a} _{1} \mathrm{~b} _{1}+\mathrm{a} _{2} \mathrm{~b} _{2}+\mathrm{a} _{3} \mathrm{~b} _{3}}{\sqrt{\mathrm{a} _{1}{ }^{2}+\mathrm{a}^{2}{ } _{2}+\mathrm{a}^{2}{ } _{3}} \sqrt{\mathrm{b} _{1}{ }^{2}+\mathrm{b}^{2}{ } _{2}+\mathrm{b}^{2}{ } _{3}}}$

(ix) $\left(a _{1} b _{1}+a _{2} b _{2}+a _{3} b _{3}\right)^{2} \leq \sqrt{a _{1}{ }^{2}+a _{2}{ }^{2}+a _{3}{ }^{2}} \sqrt{b _{1}{ }^{2}+b _{2}{ }^{2}+b _{3}{ }^{2}}$

Here equality holds if $\dfrac{\mathrm{a} _{1}}{\mathrm{~b} _{1}}=\dfrac{\mathrm{a} _{2}}{\mathrm{~b} _{2}}=\dfrac{\mathrm{a} _{3}}{\mathrm{~b} _{3}}$

${\text { i.e. }(\vec{a} \cdot \vec{b}) \leq|\vec{a}||\vec{b}|}$

(x) $\overrightarrow{\mathrm{r}}=(\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{i}}) \hat{\mathrm{i}}+(\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{j}}) \hat{\mathrm{j}}+(\overrightarrow{\mathrm{r}} \hat{\mathrm{k}}) \hat{\mathrm{k}}$.

Note

  • Angle between any two diagonals of a cube is $\cos ^{-1}(1 / 3)$
  • Angle between diagonal of a cube and a diagonal of a face of the cube is $\cos ^{-1} \sqrt{\dfrac{2}{3}}$

Vector (cross) Product

$\vec{a} \times \vec{b}=a b \sin \theta$ n where $\hat{n}$ is a unit normal vector to the plane determined by $\vec{a} \& \vec{b}$ such that $\vec{a}, \vec{b}, \hat{n}$ form a right handed system.

Properties

(i) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$

(ii) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{0}$

(iii) $\vec{a} \times \vec{b}=\overrightarrow{0} \quad$ if and only if $\vec{a} | \vec{b}$

(iv) $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\overrightarrow{0}$

$\hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i} ; \hat{k} \times \hat{i}=\hat{j}$

(v) $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a _{1} & a _{2} & a _{3} \\ b _{1} & b _{2} & b _{3}\end{array}\right|$ if $\vec{a}=a _{1} \hat{i}+a _{2} \hat{j}+a _{3} \hat{k}$ and $\vec{b}=b _{1} \hat{i}+b _{2} \hat{j}+b _{3} \hat{k}$

(vi) $\vec{a} \times(\vec{b} \pm \vec{c})=\vec{a} \times \vec{b} \pm \vec{a} \times \vec{c}$

(vii) $(\vec{a} \cdot \vec{b})+(\vec{a} \times \vec{b})=|\vec{a}|^{2}|\vec{b}|^{2}$

(viii) Geometrical significance:

  • Area of parallelogram = $ \left\{\begin{array}{l} |\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| \\ \dfrac{1}{2}\left|\overrightarrow{\mathrm{d}}_1 \times \overrightarrow{\mathrm{d}}_2\right| \text { if } \overrightarrow{\mathrm{d}}_1=\overrightarrow{\mathrm{OC}} \& \overrightarrow{\mathrm{d}}_2=\overrightarrow{\mathrm{BA}} \text { are diagonals } \end{array}\right.$

  • $\text { Area of }{ }_{\Delta} \mathrm{OAB}=\dfrac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$

(ix) Unit vector perpendicular to $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{b}}$ is $\hat{n}=\dfrac{ \pm(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})}{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}$

(x) If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of vertices $A, B, C$ of $\triangle A B C$. Then

$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$

$\left\{\begin{array}{l}=2(\text { vector area of } \triangle \mathrm{ABC}) \\ =0 \Rightarrow \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}} \text { are collinear } \\ \text { is a vector perpendicular to the plane } \mathrm{ABC}\end{array}\right.$

(xi) $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}=2|\vec{a}|^{2}$

Scalar Triple (Dot, Mixed) Product

Let the angle between $\vec{a} \& \vec{b}$ be $\theta ; \vec{c} \& \vec{a} \times \vec{b}$ be $\phi$, then

$\vec{a} \times \vec{b} \cdot \vec{c}=[\vec{a} \vec{b} \vec{c}]=|\vec{a}||\vec{b}||\vec{c}| \sin \theta \cos \phi$

Properties

(i) $[\hat{i} \hat{j} \hat{k}]=1$

(ii) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})$

(iii) $[\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{a}]=[\vec{c} \vec{a} \vec{b}]$

But $[\bar{a} \bar{b} \bar{c}]=-[\vec{a} \vec{c} \vec{b}]$

(iv) $[\vec{a} \vec{b} \vec{c}]=|\vec{a}||\vec{b}||\vec{c}|$ if $\vec{a} \perp \vec{b} \perp \vec{c}$

(v) $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a _{1} & a _{2} & a _{3} \\ b _{1} & b _{2} & b _{3} \\ c _{1} & c _{2} & c _{3}\end{array}\right|$ if $\vec{a}=a _{1} \hat{i} a _{2} \hat{j}+a _{3} \hat{k}, \vec{b}=b _{1} \hat{i}+b _{2} \hat{j}+b _{3} \hat{k}, \vec{c}=c _{1} \hat{i}+c _{2} \hat{j}+c _{3} \hat{k}$

(vi) $[\vec{a} \vec{b} \vec{c}]=0$ if any of two vectors are parallel or equal.

(vii) $[\lambda \vec{a} \vec{b} \vec{c}]=\lambda[\vec{a} \vec{b} \vec{c}]$

(viii) $[\vec{a}+\vec{d} \vec{b} \vec{c}]=[\vec{a} \vec{b} \vec{c}]+[\vec{d} \vec{b} \vec{c}]$

(ix) Geometrical meaning:

Volume of tetrahedron

  • with $\vec{a}, \vec{b}, \vec{c}$ as coterminous edges is $\dfrac{1}{6}|[\vec{a} \vec{b} \vec{c}]|$
  • with $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ as vertices $=\dfrac{1}{6}[[\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{AC}} \overrightarrow{\mathrm{AD}}]$
  • Centroid of tetrahedron divides the line joining any vertex to the centroid of its opposite face in the ratio $3: 1$.

(x) $[\vec{a} \vec{b} \vec{c}]\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]=\left|\begin{array}{lll}\vec{a} \cdot \vec{u} & \vec{a} \cdot \vec{v} & \vec{a} \cdot \vec{w} \ \vec{b} \cdot \vec{u} & \vec{b} \cdot \vec{v} & \vec{b} \cdot \vec{w} \ \vec{c} \cdot \vec{u} & \vec{c} \cdot \vec{v} & \vec{c} \cdot \vec{w}\end{array}\right|$

(xi) $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{ll}\vec{a} \vec{b} \vec{c}\end{array}\right]$

(xii) $\left[\begin{array}{lll}\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}\end{array}\right]=0$

(xiii) If $\vec{a}, \vec{b}$ and $\vec{c}$ are three coterminous edges of a parallelepiped, triangular prism and tetrahedron, $\mathrm{V} _{1}, \mathrm{~V} _{2} \& \mathrm{~V} _{3}$ be their volumes respectively, then

$V _{1}=[\vec{a} \vec{b} \vec{c}] ; \quad V _{2}=\dfrac{1}{2}[\vec{a} \vec{b} \vec{c}]$ and $V _{3}=\dfrac{1}{6}[\vec{a} \vec{b} \vec{c}]$

$\therefore \mathrm{V} _{1}: \mathrm{V} _{2}: \mathrm{V} _{3}=1: \dfrac{1}{2}: \dfrac{1}{6}=6: 3: 1$

Solved Examples

1. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\overrightarrow{\mathrm{v}}$ is the plane of $\vec{a} \& \vec{b}$ whose projection on $\vec{c}$ is $\dfrac{1}{\sqrt{3}}$ is given by

(a) $\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$

(b) $-3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

(c) $3 \hat{i}-\hat{j}+3 \hat{k}$

(d) $\hat{i}+3 \hat{j}-3 \hat{k}$

Show Answer

Solution:

Let $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

$=(1+\lambda) \hat{\mathrm{i}}+(1-\lambda) \hat{\mathrm{j}}+(1+\lambda) \hat{\mathrm{k}}$

projection of $\overrightarrow{\mathrm{v}}$ on $\overrightarrow{\mathbf{c}}=\dfrac{1}{\sqrt{3}}$

$\begin{aligned} & \Rightarrow \dfrac{\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{c}}}{|\overrightarrow{\mathrm{c}}|}=\dfrac{1}{\sqrt{3}} \\ & \Rightarrow 1+\lambda-1+\lambda-1-\lambda=1 \Rightarrow \lambda=2 \end{aligned}$

$\therefore \overrightarrow{\mathrm{v}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$

Answer (c)

2. Values of $\lambda$ such that $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \neq(0,0,0)$ and $(\hat{i}+\hat{j}+3 \hat{k}) x+(3 \hat{i}-3 \hat{j}+\hat{k}) y+(-4 \hat{i}+5 \hat{j}) z=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$

(a) 0

(b) -1

(c) 0

(d) None of these

Show Answer

Solution:

Comparing coefficents of $\hat{i}, \hat{j} \& \hat{k}$

$\mathrm{x}+2 \mathrm{y}-4 \mathrm{z}=\lambda \mathrm{x}$ $\quad \quad \quad$i.e. $(1-\lambda) x+3 y-4 z=0$ ……………….(1)

$\mathrm{x}-3 \mathrm{y}+5 \mathrm{z}=\lambda \mathrm{y}$ $\quad \quad \quad$ i.e. $x-(3+\lambda) y+5 z=0$. ……………….(2)

$3 \mathrm{x}+\mathrm{y}=\lambda \mathrm{z}$ $\quad \quad \quad$ i.e. $3 x+y-\lambda z=0$. …………………(3)

(1),(2) & (3) will have non trivial solutions if $\left|\begin{array}{ccc}1-\lambda & 3 & -4 \\ 1 & -(3+\lambda) & 5 \\ 3 & 1 & -\lambda\end{array}\right|=0 \quad(\because \mathrm{x}, \mathrm{y}, \mathrm{z}) \neq 0$ Expanding, we get $\lambda^{3}+2 \lambda^{2}+\lambda=0$

$\Rightarrow \lambda(\lambda+1)^{2}=0$

$\therefore \lambda=0,-1$

Answer (a), (b)

3. If $\vec{a}$ and $\vec{b}$ are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$, then possible values of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is

(a) 0

(b) 3

(c) 4

(d) 8

Show Answer

Solution:

Let $\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

Then $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}} \Rightarrow(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} | \overrightarrow{\mathrm{c}}$

$\therefore \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\lambda \overrightarrow{\mathrm{c}}$

$\Rightarrow|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=|\lambda||\overrightarrow{\mathrm{c}}|$

$\Rightarrow \sqrt{29}=|\lambda| \sqrt{29} \quad \Rightarrow \lambda= \pm 1$

$\therefore \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}= \pm(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$

Now $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k}) \pm(-14+6+12)= \pm 4$

Answer: (c)

4. In figure, $\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}, \overrightarrow{\mathrm{AC}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{DE}}=4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}$ then the area of the shaded region in square units is

(a) 15

(b) 6

(c) 7

(d) 8

Show Answer

Solution:

We have $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AC}}$

$=(-3 \hat{i}+\hat{j})+(2 \hat{i}+3 \hat{j})=-\hat{i}+4 \hat{j}$

Vector Area of shaded region $=\dfrac{1}{2} \overrightarrow{\mathrm{ED}} \times \overrightarrow{\mathrm{EB}}+\dfrac{1}{2} \overrightarrow{\mathrm{EC}} \times \overrightarrow{\mathrm{ED}}$

$\begin{aligned} & =\dfrac{1}{2} \overrightarrow{\mathrm{ED}} \times(\overrightarrow{\mathrm{EB}}-\overrightarrow{\mathrm{EC}}) \\ & =\dfrac{1}{2} \overrightarrow{\mathrm{ED}} \times \overrightarrow{\mathrm{CB}} \\ & =\dfrac{1}{2}(16 \hat{\mathrm{k}}-2 \hat{\mathrm{k}})=7 \hat{\mathrm{k}} \end{aligned}$

$\therefore$ Area $=7$ sq.units

Answer: (c)

5. If ’ $\mathrm{a}$ ’ is a real constant and $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ are variable angles and $\sqrt{\mathrm{a}^{2}-4} \tan \mathrm{A}+\mathrm{a} \tan \mathrm{B}+$ $\sqrt{\mathrm{a}^{2}+4} \tan \mathrm{C}=6 \mathrm{a}$, then the least value of $\tan ^{2} \mathrm{~A}+\tan ^{2} \mathrm{~B}+\tan ^{2} \mathrm{C}$ is

(a) 6

(b) 10

(c) 12

(d) 3

Show Answer

Solution:

The given relation can be written as

$\begin{aligned} & \left(\sqrt{a^{2}-4} \hat{i}+a \hat{j}+\sqrt{a^{2}+4} \hat{k}\right)(\tan A \hat{i}+\tan B \hat{j}+\tan C \hat{k})=6 a \\ & \Rightarrow \sqrt{a^{2}-4+a^{2}+a^{2}+4}\left(\tan ^{2} A+\tan ^{2} B+\tan ^{2} C\right) \cos \theta=6 a \\ & \Rightarrow \sqrt{3} a \sqrt{\tan ^{2} A+\tan ^{2} B+\tan ^{2} C}=6 a \sin \theta \\ & \Rightarrow \tan ^{2} A+\tan ^{2} B+\tan ^{2} C \geq 12 \sec ^{2} \theta \geq 12 \end{aligned}$

Answer: (c)

6. The vertex A of triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices $B$ \& $C$ have respective position vectors $\hat{i}$ and $\hat{j}$. Let $\Delta$ be the area of the triangle and $\Delta \in\left[\dfrac{3}{2}, \dfrac{\sqrt{33}}{2}\right]$, then the range of values of $\lambda$ corresponding to $A$ is

(a) $[-8,-4] \cup[4,8]$

(b) $[-4,4]$

(c) $[-2,2]$

(d) $[-4,-2] \cup[2,4]$

Show Answer

Solution:

$\left.\Delta=\dfrac{1}{2}|(\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\lambda \hat{\mathrm{k}})|=\dfrac{1}{2} \right\rvert, \hat{\mathrm{k}}+\lambda \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}=\dfrac{1}{2} \sqrt{2 \lambda^{2}+1}$

$\dfrac{9}{4} \leq \dfrac{1}{4}\left(2 \lambda^{2}+1\right) \leq \dfrac{33}{4} \Rightarrow 4 \leq \lambda^{2} \leq 16$

$2 \leq|\lambda| \leq 4$

Answer: (d)

7. If $\vec{a}, \vec{b}$ and $\vec{c}$ are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is

(a) $\sqrt{54}$

(b) 3

(c) 12

(d) None of these

Show Answer

Solution:

$\begin{aligned} & |\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9 \\ & \Rightarrow 6-2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=9 \\ & \Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c} \cdot+\vec{c} \cdot \vec{a}=\dfrac{-3}{2} \\ & |\vec{a}+\vec{b}+\vec{c}|^{2}=\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c} \cdot+\vec{c} \cdot \vec{a})=0 \\ & \Rightarrow \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \\ & \Rightarrow \vec{a}=-(\vec{b}+\vec{c}) \\ & \therefore|(2 \vec{a}+5 \vec{b}+5 \vec{c})|=|2 \vec{a}-5 \vec{a}|=|-3 \vec{a}|=3 \end{aligned}$

Answer: 3

Exercise

1. Two adjacent sides of a parallelogram $\mathrm{ABCD}$ are given by $\overrightarrow{\mathrm{AB}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+11 \hat{\mathrm{k}} \& \overrightarrow{\mathrm{AD}}=-$ $\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle $\alpha$ in the plane of the parallelogram so that $\mathrm{AD}$ becomes $\mathrm{AD}^{1}$. If $\mathrm{AD}^{1}$ makes a right angle with the side $\mathrm{AB}$, then the cosine of the angle $\alpha$ is given by

(a) $\dfrac{8}{9}$

(b) $\dfrac{\sqrt{17}}{9}$

(c) $\dfrac{1}{9}$

(d) $\dfrac{4 \sqrt{5}}{9}$

Show Answer Answer: b

2. Let two non collinear unit vectors $\hat{a}$ and $\hat{b}$ form an acute angle. A point $\mathrm{P}$ moves so that at any time the position vector $\overrightarrow{\mathrm{OP}}$ is given by $\hat{\mathrm{a}}$ cost $+\hat{\mathrm{b}}$ sint. When $\mathrm{P}$ is farthest from origin $\mathrm{O}$, let $\mathrm{M}$ be the length of $\overrightarrow{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be unit vector along $\overrightarrow{\mathrm{OP}}$. Then

(a) $\quad \hat{u}=\dfrac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{1 / 2}$

(b) $\quad \hat{u}=\dfrac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{1 / 2}$

(c) $\quad \hat{u}=\dfrac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{1 / 2}$

(d) $\quad \hat{u}=\dfrac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{1 / 2}$

Show Answer Answer: a

3. The values of $x$ for which the angle between the vectors $2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $7 \hat{i}-2 \hat{j}+x \hat{k}$ are obtuse and the angle between the $z$-axis and $7 \hat{i}-2 \hat{j}+x \hat{k}$ is acute and less then $\dfrac{\pi}{6}$ is given by

(a) $0<x<\dfrac{1}{2}$

(b) $\mathrm{x}>\dfrac{1}{2}$ or $\mathrm{x}<0$

(c) $\dfrac{1}{2}<x<15$

(d) There is no such value for $x$.

Show Answer Answer: d

4. A unit tangent vector at $t=2$ on the serves $x=t^{2}+2, y=4 t-5, z=2 t^{2}-6 t$ is

(a) $\dfrac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$

(b) $\dfrac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$

(c) $\dfrac{1}{\sqrt{6}}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$

(d) None of these

Show Answer Answer: b

5. When a right handed rectangular Cartesian system OXYZ is rotated about the z-axis through an angle $\dfrac{\pi}{4}$ in the counter clockwise direction it is found that a vector $\vec{a}$ has the components $2 \sqrt{2}, 3 \sqrt{2}$ and 4 . The components of $\vec{a}$ in the OXYZ coordinate system are

(a) $5,-1,4$

(b) $5,-1,4 \sqrt{2}$

(c) $-1,-5,4 \sqrt{2}$

(d) None of these

Show Answer Answer: d

6. Let $V$ be the volume of the parallelopiped formed by the vectors $\vec{a}=a _{1} \hat{i}+a _{2} \hat{j}+a _{3} \hat{k}$, $\vec{b}=b _{1} \hat{i}+b _{2} \hat{j}+b _{3} \hat{k}$ and $\vec{c}=c _{1} \hat{i}+c _{2} \hat{j}+c _{3} \hat{k}$ If $a _{r}, b _{r}, c _{r}$ where $r=1,2,3$, are non negative real numbers and $\sum\limits _{\mathrm{r}=1}^{3}\left(\mathrm{a} _{\mathrm{r}}+\mathrm{b} _{\mathrm{r}}+\mathrm{c} _{\mathrm{r}}\right)=3 \mathrm{~L}$, then $\mathrm{V}$

(a) $\leq \mathrm{L}^{3}$

(b) $\geq \mathrm{L}^{3}$

(c) $\leq \mathrm{L}^{2}$

(d) $\geq \mathrm{L}^{2}$

Show Answer Answer: a

7. Incident ray is along the unit vector $\hat{v}$ and the reflected ray is along the unit vector $\hat{w}$. The normal is along unit vector $\hat{a}$ outwards Then $\hat{v}-2(\hat{a} \cdot \hat{v}) \hat{a}=$

(a) $\hat{u}$

(b) $\hat{\mathbf{w}}$

(c) $\dfrac{\hat{\mathrm{w}}}{2}$

(d) None of these

Show Answer Answer: b

8. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} . \vec{c} \\ \vec{b} . \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} . \vec{c}\end{array}\right|=$

(a) 0

(b) $\overrightarrow{0}$

(c) $\vec{a}+\vec{b}+\vec{c}$

(d) None of these

Show Answer Answer: b

9. $\quad \mathrm{~A} _{1}, \mathrm{~A} _{2}, \mathrm{~A} _{3} \ldots \ldots . \mathrm{A} _{\mathrm{n}}$ are the vertices of a regular plane polygon with $\mathrm{n}$ sides and 0 is its centre, then $\sum\limits _{i=1}^{n-1}\left(\overrightarrow{\mathrm{OA}} _{\mathrm{i}} \times \overrightarrow{\mathrm{OA}} _{\mathrm{i}+1}\right)=$

(a) (n-1) $\left(\overrightarrow{\mathrm{OA}} _{2} \times \overrightarrow{\mathrm{OA}} _{1}\right)$

(b) $(1-\mathrm{n})\left(\overrightarrow{\mathrm{OA}} _{2} \times \overrightarrow{\mathrm{OA}} _{1}\right)$

(c) $(\mathrm{n}-1)\left(\overrightarrow{\mathrm{OA}} _{1} \times \overrightarrow{\mathrm{OA}} _{2}\right)$

(d) $(1-\mathrm{n})\left(\overrightarrow{\mathrm{OA}} _{1} \times \overrightarrow{\mathrm{OA}} _{2}\right)$

Show Answer Answer: b, c

10. $\mathrm{O}$ is a point inside a tetrahedron $\mathrm{ABCD}$. If $\mathrm{AO}, \mathrm{BO}, \mathrm{CO}, \mathrm{DO}$ are produced to cut the opposite faces $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ respectively, then $\sum \dfrac{\mathrm{OP}}{\mathrm{AP}}=$

(a) 4

(b) 3

(c) 2

(d) 1

Show Answer Answer: d

11. Read the paragraph and answer the following question

A tetrahedron is a triangular pyramid. If position vector of all the vertices of tetrahedron are $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$, then position vector of centroid is $\dfrac{\vec{a}+\vec{b}+\vec{c}+\vec{d}}{4}$. If $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ are adjacent sides of tetrahedron, then its volume is $\dfrac{1}{6}[\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AD}}]$

(i) In a regular tetrahedron if the distance between centroid and mid-point of any edge of tetrahedron is equal to

(a) $\dfrac{1}{3}$ (edge of tetrahedron)

(b) $\dfrac{1}{2 \sqrt{2}}$ (edge of tetrahedron)

(c) $\dfrac{1}{2 \sqrt{3}}$ (edge of tetrahedron)

(d) $\dfrac{1}{3 \sqrt{2}}$ (edge of tetrahedron)

(ii) In regular tetrahedron angle between two opposite edges is

(a) $\dfrac{\pi}{3}$

(b) $\dfrac{\pi}{6}$

(c) $\dfrac{2 \pi}{3}$

(d) $\dfrac{\pi}{2}$

(iii) If vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors whose magnitudes are equal to area of the faces of a tetrahedron and directions perpendicular and outward directions to the faces respectively then the volume o of tetrahedron is

(a) $\dfrac{1}{6 \sqrt{2}} \mathrm{a}^{3}$

(b) $\dfrac{1}{3 \sqrt{2}} \mathrm{a}^{3}$

(c) $\dfrac{1}{4 \sqrt{2}} a^{3}$

(d) $\dfrac{1}{8 \sqrt{2}} \mathrm{a}^{3}$

Show Answer Answer: (i) b (ii) d (iii) a

12. $\vec{a} \& \vec{b}$ form the consecutive sides of a regular hexagon $A B C D E F$

Column I Column II
(a) If $\overrightarrow{\mathrm{CD}}=\mathrm{x} \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{b}}$, then (p) $x=-2$
(b) If $\overrightarrow{\mathrm{CE}}=\mathrm{x} \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{b}}$, then (q) $x=-2$
(c) If $\overrightarrow{\mathrm{AC}}=\mathrm{x} \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{b}}$, then (r) $y=1$
(d) If $\overrightarrow{\mathrm{AD}}=\mathrm{x} \overrightarrow{\mathrm{a}}$ then (s) $y=2$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{q}, \mathrm{sr} ; \mathrm{c} \rightarrow \mathrm{p}, \mathrm{r} ; \mathrm{d} \rightarrow \mathrm{r}, \mathrm{s}$


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ