Vector - Collinear and Coplanar Vectors (Lecture-03)

Linear Combination of vectors

A vector $\overrightarrow{\mathrm{r}}$ is said to be a linear combination of vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ ………..etc. If there exist scalars $x$,

$y, z$ etc. such that $\quad \vec{r}=x \vec{a}+y \vec{b}+z \vec{c}+$ ………..

Collinearity and Coplanarity

(i) Two vectors $\vec{a} \& \vec{b}$ are collinear if and only if $\vec{a}=\lambda \vec{b}$ where $\lambda$ is a scalar

i.e.if $\vec{a}=a _{1} \hat{i}+a _{2} \hat{j}+a _{3} \hat{k}$ and $\vec{b}=b _{1} \hat{i}+b _{2} \hat{j}+b _{3} \hat{k}$ and $\vec{a} \& \vec{b}$ are collinear if $\dfrac{\mathrm{a} _{1}}{\mathrm{~b} _{1}}=\dfrac{\mathrm{a} _{2}}{\mathrm{~b} _{2}}=\dfrac{\mathrm{a} _{3}}{\mathrm{~b} _{3}}$.

Also if $\vec{a}$ and $\vec{b}$ are two non collinear vectors and $x \vec{a}+y \vec{b}=\overrightarrow{0}$, then $x=0$ and $y=0$

(ii) Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear if and only if there exist scalars $x, y, z$ not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$ where $x+y+z=0$

Also three points $\mathrm{A}(\overrightarrow{\mathrm{a}}), \overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{b}}), \mathrm{C}(\overrightarrow{\mathrm{c}})$ are collinear if and only if $\overrightarrow{\mathrm{AB}}=\lambda \overrightarrow{\mathrm{AC}}$ for some scalar $\lambda$

(iii) Vectors lie on same or parallel planes are called coplanar vectors.

Let $\vec{a} \& \vec{b}$ be two given non-zero non-collinear vectors. Then any vector $\overrightarrow{\mathrm{r}}$ coplanar with $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{b}}$ can be uniquely expressed as $\overrightarrow{\mathrm{r}}=\mathrm{x} \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{b}}$ for same scalars $\mathrm{x} \& \mathrm{y}$.

(iv) If three vectors are coplanar, then one of them can be expressed as a linear combination of the other two.

i.e. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then there exists scalars $x, y, z$ not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$.

Also if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$, then $x=y=z=0$

(v) Four points with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar if and only if there exist scalars $x, y, z, u$ not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}+u \vec{d}=\overrightarrow{0}$ where $x+y+z+u=0$

Note: If three non coplanar vectors $\vec{a}, \vec{b} \& \vec{c}$ are given, then every vector $\overrightarrow{\mathrm{r}}$ in space can be uniquely expressed as $\overrightarrow{\mathrm{r}}=x \overrightarrow{\mathrm{a}}+\mathrm{y} \overrightarrow{\mathrm{b}}+\mathrm{z} \overrightarrow{\mathrm{c}}$ for some scalars $x, y \& z$.

Linear independence and dependence of vectors

(i) A set of vectors $\vec{a} _{1}, \vec{a} _{2}, \ldots \ldots \ldots \ldots \ldots . . . \vec{a} _{n}$ is said to be linearly independent if $\mathrm{x} _{1} \overrightarrow{\mathrm{a}} _{1}+\mathrm{x} _{2} \overrightarrow{\mathrm{a}} _{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{x} _{\mathrm{n}} \overrightarrow{\mathrm{a}} _{\mathrm{n}}=\overrightarrow{0} \Rightarrow \mathrm{x} _{1}=\mathrm{x} _{2}=\ldots \ldots \ldots \ldots . .=\mathrm{x} _{\mathrm{n}}=0$

(ii) A set of vectors $\overrightarrow{\mathrm{a}} _{1}, \overrightarrow{\mathrm{a}} _{2}, \ldots \ldots \ldots \ldots \ldots . . \overrightarrow{\mathrm{a}} _{\mathrm{n}}$ is said to be linearly dependent if there exist scalars $\mathrm{x} _{1}, \mathrm{x} _{2} \ldots \ldots \ldots \mathrm{x} _{\mathrm{n}}$ not all zero such that $\mathrm{x} _{1} \overrightarrow{\mathrm{a}} _{1}+\mathrm{x} _{2} \overrightarrow{\mathrm{a}} _{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{x} _{\mathrm{n}} \overrightarrow{\mathrm{a}} _{\mathrm{n}}=\overrightarrow{0}$

i.e. a set of vectors is linearly dependent if and only if one of them is expressible as a linear

combination of others.

Note

(i) Two non-zero, non colinear vectors are linearly independent.

(ii) Any two collinear vectors are linearly dependent.

(iii) Any three non-coplanar vectors are linearly independent.

(iv) Any three coplanar vectors are linearly dependent.

(v) Any four vectors in 3-dimensional space are linearly dependent.

Solved Examples

1. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, no two of which are collinear, $\vec{a}+2 \vec{b}$ is collinear with $\overrightarrow{\mathrm{c}}$ and $\overrightarrow{\mathrm{b}}+3 \overrightarrow{\mathrm{c}}$ is collinear with $\overrightarrow{\mathrm{a}}$, then $|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}+6 \overrightarrow{\mathrm{c}}|$ is equal to

(a) 0

(b) 1

(c) 9

(d) None of these

Show Answer

Solution

$\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}=\lambda \overrightarrow{\mathrm{c}} \& \overrightarrow{\mathrm{b}}+3 \overrightarrow{\mathrm{c}}=\mu \overrightarrow{\mathrm{a}}$

$\Rightarrow \quad \overrightarrow{\mathrm{a}}-6 \overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{c}}-2 \mu \overrightarrow{\mathrm{a}}$

$\Rightarrow \quad(1+2 \mu) \overrightarrow{\mathrm{a}}=(6+\lambda) \overrightarrow{\mathrm{c}}$

$\therefore \quad 1+2 \mu=0 \text { and } \lambda+6=0$ $\hspace {3cm}(\therefore \overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{c}}$ are non-collinear)

$\mu=-\dfrac{1}{2} \text { and } \lambda=-6$

$\Rightarrow \quad|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}+6 \overrightarrow{\mathrm{c}}|=|-6 \overrightarrow{\mathrm{c}}+6 \overrightarrow{\mathrm{c}}|=0$

Answer (a)

2. If $\vec{x}$ and $\vec{y}$ are two non-collinear vectors and $A B C$ is a triangle with side lengths a,b,c satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=\overrightarrow{0}$, then the triangle $A B C$ is

(a) acute angled

(b) obtuse angled

(c) right angled

(d) isosceles

Show Answer

Solution

$\therefore \overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \& \overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}$ are linearly independent $\Rightarrow 20 \mathrm{a}-15 \mathrm{~b}=15 \mathrm{~b}-12 \mathrm{c}=12 \mathrm{c}-20 \mathrm{a}=0$

$\Rightarrow \dfrac{\mathrm{a}}{3}=\dfrac{\mathrm{b}}{4}=\dfrac{\mathrm{c}}{5}=\lambda$

$\mathrm{a}=3 \lambda \mathrm{b}=4 \lambda \mathrm{c}=5 \lambda$

$\therefore$ the triangle is right angled.

Answer (c)

3. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors, and $|\overrightarrow{\mathbf{c}}|=\sqrt{3}$, then

(a) $\alpha=1, \beta=-1$

(b) $\alpha=1, \beta= \pm 1$

(c) $\alpha=-1, \beta= \pm 1$

(d) $\alpha= \pm 1, \beta=1$

Show Answer

Solution

$\because \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ are linearly dependent

$\therefore\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]=0$

$\Rightarrow\left|\begin{array}{lll}1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta\end{array}\right|=0$ gives $-\beta+1=0 \quad \Rightarrow \beta=1$

Also $|\overrightarrow{\mathrm{c}}|=\sqrt{3} \Rightarrow \sqrt{1+\alpha^{2}+\beta^{2}}=\sqrt{3}$

$\therefore \alpha= \pm 1$

Answer (d)

4. Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}, \mathrm{b}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}| ;|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$, and the angle between $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ is $30^{\circ}$; then $|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})| \times \overrightarrow{\mathrm{c}}=$

(a) $2 / 3$

(b) $3 / 2$

(c) 2

(d) 3

Show Answer

Solution

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$ and $|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$ and $|\overrightarrow{\mathrm{c}}|^{2}+|\overrightarrow{\mathrm{a}}|^{2}-2(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})=8$

$\Rightarrow|\overrightarrow{\mathbf{c}}|^{2}+9-2|\overrightarrow{\mathbf{c}}|^{2}=8$

$\Rightarrow(|\overrightarrow{\mathbf{c}}|-1)^{2}=0$

$\Rightarrow|\overrightarrow{\mathrm{c}}|=1$

$\therefore|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}|=|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}|=\sin 30^{\circ}$

$=3.1 . \dfrac{1}{2}=\dfrac{3}{2} \quad \quad \quad (\because \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}} \Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=3)$

Answer (b)

5. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of equal magnitude such that angle between $\vec{a}$ and $\vec{b}$ is $\alpha, \vec{b}$ and $\vec{c}$ is $\beta, \vec{b}$ and $\vec{c}$ is $\gamma$. Then the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is

(a) $\dfrac{1}{2}$

(b) $-\dfrac{1}{2}$

(c) $\dfrac{3}{2}$

(d) $-\dfrac{3}{2}$

Show Answer

Solution

Let $|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda$

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \alpha=\lambda^{2} \cos \alpha$

$\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{c}}| \cos \beta=\lambda^{2} \cos \beta$

$\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=|\overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{a}}| \cos \gamma=\lambda^{2} \cos \gamma$

Now $|\vec{a}+\vec{b}+\vec{c}|^{2} \geq 0$

$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b}+\vec{c}+\vec{c} \cdot \vec{a}) \geq 0$

$\Rightarrow 3 \lambda^{2}+2 \lambda^{2}(\cos \alpha+\cos \beta+\cos \gamma) \geq 0$

$\Rightarrow \cos \alpha+\cos \beta+\cos \gamma \geq-\dfrac{3}{2}$

Answer (d)

6. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=2 \hat{i}-\hat{k}$ and $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ then a unit vector in the direction of $\overrightarrow{\mathrm{r}}$ is

(a) $\dfrac{1}{\sqrt{11}}(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})$

(b) $\dfrac{1}{\sqrt{11}}(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

(c) $\dfrac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$

(d) None of these

Show Answer

Solution

$\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$

$\Rightarrow \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=-\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}$

$\Rightarrow \overrightarrow{\mathrm{r}} \times(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=\overrightarrow{0}$

$\Rightarrow \overrightarrow{\mathrm{r}}$ is parallel to $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$

$\Rightarrow \overrightarrow{\mathrm{r}}=\lambda(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})$

$\therefore \overrightarrow{\mathrm{r}}=\lambda(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$

also $|\overrightarrow{\mathrm{r}}|=\sqrt{11} \lambda$

$\therefore \hat{\mathrm{r}}=\dfrac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}=\dfrac{1}{\sqrt{11}}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$

Answer (d)

Exercise

1.* Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectors with $\mathrm{a} \neq \mathrm{b}$ and $\overrightarrow{\mathrm{v}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$. Then $\overrightarrow{\mathrm{v}}$ is perpendicular to

(a) $\vec{\alpha}$

(b) $\vec{\beta}$

(c) $\vec{\gamma}$

(d) None of these

Show Answer Answer: a, b, c

2. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and $\gamma$ is a real number then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \overrightarrow{\mathrm{c}}$ are non coplanar for

(a) no value of $\lambda$

(b) all except one value of $\lambda$

(c) all except two values of $\lambda$

(d) all values of $\lambda$

Show Answer Answer: c

3. $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors and $\vec{r}$ is any arbitrary vector, then $[\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}]$

$\overrightarrow{\mathrm{b}}+\left[\begin{array}{ll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} \ \mathrm{r}\end{array}\right] \overrightarrow{\mathrm{c}}$ is always equal to

(a) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$

(b) $2[\vec{a} \quad \vec{b} \quad \vec{c}] \vec{r}$

(c) $3\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right] \overrightarrow{\mathrm{r}}$

(d) None of these

Show Answer Answer: a

4. The edges of a parallelopiped are of unit length and are parallel to non coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \hat{a}=\dfrac{1}{2}$. Then the volume of the parallelopiped is

(a) $\dfrac{1}{\sqrt{2}}$ cu.unit

(b) $\dfrac{1}{2 \sqrt{2}}$ cu.unit

(c) $\dfrac{\sqrt{3}}{2}$ cu.unit

(d) $\dfrac{1}{\sqrt{3}}$ cu.unit

Show Answer Answer: a

5. Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overrightarrow{\mathrm{b}}$ satisfying $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{0}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=3$ is

(a) $-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$

(b) $2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

(c) $\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$

(d) $\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$

Show Answer Answer: a

6. $\mathrm{ABCD}$ is parallelogram. $\mathrm{A} _{1}$ and $\mathrm{B} _{1}$ are the mid points of sides $\mathrm{BC}$ and $\mathrm{CD}$ respectively. If $\overrightarrow{\mathrm{AA}} _{1}$ $+\overrightarrow{\mathrm{AB}} _{1}=\lambda \overrightarrow{\mathrm{AC}}$, then $\lambda$ is

(a) 1

(b) $\dfrac{3}{2}$

(c) $\dfrac{2}{3}$

(d) None of these

Show Answer Answer: b

7. $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+x _{1} \hat{j}+x _{2} \hat{k}$ are linearly dependent vectors and $|\vec{c}|=$ 2 , then the value of $729 \mathrm{x} _{1}{ }^{4}+343 \mathrm{x} _{1}{ }^{2} \mathrm{x} _{2}{ }^{2}+81 \mathrm{x} _{2}{ }^{2}+15=$

(a) 3689

(b) 3869

(c) 3698

(d) None of these

Show Answer Answer: c

8. $\vec{b}$ and $\vec{c}$ are non-collinear vectors. If $\vec{a} \times(\vec{b} \times \vec{c})+(\vec{b} \cdot \vec{a}) \vec{b}=(4-2 x-\operatorname{siny}) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$, then the value of $x^{\text {siny }}+(4 \sin y)^{4 x}+15$ must be

(a) 722

(b) 272

(d) 227

(d) None of these

Show Answer Answer: b

9. If $\mathrm{G} _{1}, \mathrm{G} _{2}, \mathrm{G} _{3}$ are the centroids of the triangular faces $\mathrm{OBC}, \mathrm{OCA}, \mathrm{OAB}$ of a tetrahedron $\mathrm{OABC}$. If $\lambda$ be the ratio of the volume of the tetrahedron to the volume of the parallelepiped with $\mathrm{OG} _{1}, \mathrm{OG} _{2}, \mathrm{OG} _{3}$ as coterminus edges, the $\lambda=$

(a) $\dfrac{9}{4}$

(b) $\dfrac{4}{9}$

(c) $\dfrac{1}{6}$

(d) None of these

Show Answer Answer: a

10. Match the following:

Column I Column II
(a) If $\vec{a}, \vec{b}$ and $\vec{c}$ are three mutually perpendicular vectors $\text { where }|\vec{a}|=|\vec{b}|=2,|\vec{c}|=1 \text {, then }\left[\begin{array}{lll} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{array}\right] \text { is }$ (p) -12
(b) If $\vec{a}$ and $\vec{b}$ are two unit vectors inclined at $\dfrac{\pi}{3}$, then $16\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{a} \times \vec{b} & \vec{b}\end{array}\right]$ is (q) 0
(c) If $\vec{b}$ and $\vec{c}$ are orthogonal unit vectors and $\vec{b} \times \vec{c}=\vec{a}$, then $\left[\begin{array}{lll}\vec{a}+\vec{b}+\vec{c} & \vec{a}+\vec{b} & \vec{b}+\vec{c}\end{array}\right]$ is (r) 16
(d) If $\left[\begin{array}{lll}\vec{x} & \vec{y} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{x} & \vec{y} & \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$ each vector being a non-zero vector, then $[\overrightarrow{\mathrm{x}} \overrightarrow{\mathrm{y}} \overrightarrow{\mathrm{c}}]$ is (s) 1
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{p} ; \dot{\mathrm{c}} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{q}$

11. Read the passage and answer the following questions

Vectors $\vec{x}, \vec{y}$ and $\vec{z}$ each of the magnitude $\sqrt{2}$ make angle of $60^{\circ}$ with each other $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$

(i) Vector $\overrightarrow{\mathrm{x}}$ is

(a) $\dfrac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+(\vec{a}+\vec{b})]$

(b) $\dfrac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}-\vec{b})]$

(c) $\dfrac{1}{2}[-(\vec{a}+\vec{b}) \times \vec{c}+\vec{a}+\vec{b}]$

(d) $\dfrac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})]$

(ii) Vector $\vec{y}$ is

(a) $\dfrac{1}{2}[(\vec{a}+\vec{c}) \times \vec{b}-\vec{b}-\vec{a}]$

(b) $\dfrac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}+\vec{b}+\vec{a}]$

(c) $\dfrac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}+\vec{b}+\vec{a}]$

(d) $\dfrac{1}{2}[(\vec{a}-\vec{c}) \times \vec{a}+\vec{b}-\vec{a}]$

(iii) Vector $\overrightarrow{\mathrm{z}}$ is

(a) $\dfrac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}-\vec{b}+\vec{a}]$

(b) $\dfrac{1}{2}[(\vec{b}+\vec{a}) \times \vec{c}+\vec{b}-\vec{a}]$

(c) $\dfrac{1}{2}[\vec{c} \times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$

(d) None of these.

Show Answer Answer: (i) d (ii) c (ii) b


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ