Chemical Kinetics Ques 26

26. The bromination of acetone that occurs in acid solution is represented by this equation.

[2008]

$CH_3 COCH_3(aq)+Br_2(aq) \to$ $CH_3 COCH_2 Br(aq)+H^{+}(aq)+Br^{-}(aq)$

These kinetic data were obtained for given reaction concentrations.

Initial Concentrations, M

$[CH_3COCH_3]$ $[Br_2]$ $[H^+]$
0.30 0.05 0.05
0.30 0.10 0.05
0.30 0.10 0.10
0.40 0.05 0.20

Initial rate, disappearance of $Br_2,Ms^{-1}$

$\begin{aligned} & 5.7 \times 10^{-5} \\ & 5.7 \times 10^{-5} \\ & 1.2 \times 10^{-4} \\ & 3.1 \times 10^{-4}\end{aligned}$

Base on these data, the rate equation is:DD

(a) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{H}^{+}\right]$

(b) Rate $=k\left[\mathrm{CH}=\mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]$

(c) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]\left[\mathrm{H}^{+}\right]^2$

(d) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]\left[\mathrm{H}^{+}\right]$

Show Answer

Answer:

Correct Answer: 26.(a)

Solution:

(a) Rewriting the given data for the reaction

$ \begin{aligned} & \mathrm{CH}_3 \mathrm{COCH}_3(\mathrm{aq})+\mathrm{Br}_2(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}} \\ & \quad \mathrm{CH}_3 \mathrm{COCH}_2 \mathrm{Br}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \end{aligned} $

S No. Initial concentration
of $CH_3COCH_3$
in M
Initial concentration
of $Br_2$
in M
Initial concentration
of $H^+$
in M
Rate of
disappearance
of $Br_2$ in MS^{-1}$
i.e. $-\frac{d}{dt} [Br_2]$ or $\frac{dx}{dt}$
1 0.30 0.05 0.05 $5.7 \times 10^{-5}$
2 0.30 0.10 0.05 $5.7 \times 10^{-5}$
3 0.30 0.10 0.10 $1.2 \times 10^{-4}$
4 0.40 0.05 0.20 $3.1 \times 10^{-4}$

This raction is autocatalyzed and involves complex calculation for concentration terms.

We can look at the above results in a simple way to find the dependence of reaction rate (i.e. rate of disappearance of $Br_2$).

From data (1) and (2) in which concentration of $\mathrm{CH}_3 \mathrm{COCH}_3$ and $\mathrm{H}^{+}$remain unchanged and only the concentration of $\mathrm{Br}_2$ is doubled, there is no change in rate of reaction. It means the rate of reaction is independent of concentration of $\mathrm{Br}_2$. Again from (2) and (3) in which $\left(\mathrm{CH}_3 \mathrm{CO} \mathrm{CH}_3\right)$ and $\left(\mathrm{Br}_2\right)$ remain constant but $\mathrm{H}^{+}$increases from $0.05 \mathrm{M}$ to 0.10 i.e. doubled, the rate of reaction changes from $5.7 \times 10^{-5}$ to $1.2 \times 10^{-4}$ (or $12 \times 10^{-5}$ ), thus it also becomes almost doubled. It shows that rate of reaction is directly proportional to $\left[\mathrm{H}^{+}\right]$. From (3) and (4), the rate should have doubled due to increase in conc of $\left[\mathrm{H}^{+}\right]$from $0.10 \mathrm{M}$ to $0.20 \mathrm{M}$ but the rate has changed from $1.2 \times 10^{-4}$ to $3.1 \times 10^{-4}$. This is due to change in concentration of $\mathrm{CH}_3 \mathrm{COCH}_3$ from $0.30 \mathrm{M}$ to $0.40 \mathrm{M}$. Thus, the rate is directly proportional to $\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]$.

$\text{rate} = k[CH_3COCH_3]^1[Br_2]^0[H^+]^1$

$ =k[CH_3COCH_3][H^+] $