Chemical Kinetics Ques 26

26. The bromination of acetone that occurs in acid solution is represented by this equation.

[2008]

$CH_3 COCH_3(aq)+Br_2(aq) \to$ $CH_3 COCH_2 Br(aq)+H^{+}(aq)+Br^{-}(aq)$

These kinetic data were obtained for given reaction concentrations.

Initial Concentrations, M

$[CH_3COCH_3]$ $[Br_2]$ $[H^+]$
0.30 0.05 0.05
0.30 0.10 0.05
0.30 0.10 0.10
0.40 0.05 0.20

Initial rate, disappearance of $Br_2,Ms^{-1}$

$\begin{aligned} & 5.7 \times 10^{-5} \\ & 5.7 \times 10^{-5} \\ & 1.2 \times 10^{-4} \\ & 3.1 \times 10^{-4}\end{aligned}$

Base on these data, the rate equation is:DD

(a) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{H}^{+}\right]$

(b) Rate $=k\left[\mathrm{CH}=\mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]$

(c) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]\left[\mathrm{H}^{+}\right]^2$

(d) Rate $=k\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]\left[\mathrm{Br}_2\right]\left[\mathrm{H}^{+}\right]$

Show Answer

Answer:

Correct Answer: 26.(a)

Solution:

(a) Rewriting the given data for the reaction

$ \begin{aligned} & \mathrm{CH}_3 \mathrm{COCH}_3(\mathrm{aq})+\mathrm{Br}_2(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}} \\ & \quad \mathrm{CH}_3 \mathrm{COCH}_2 \mathrm{Br}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \end{aligned} $

S No. Initial concentration
of $CH_3COCH_3$
in M
Initial concentration
of $Br_2$
in M
Initial concentration
of $H^+$
in M
Rate of
disappearance
of $Br_2$ in MS^{-1}$
i.e. $-\frac{d}{dt} [Br_2]$ or $\frac{dx}{dt}$
1 0.30 0.05 0.05 $5.7 \times 10^{-5}$
2 0.30 0.10 0.05 $5.7 \times 10^{-5}$
3 0.30 0.10 0.10 $1.2 \times 10^{-4}$
4 0.40 0.05 0.20 $3.1 \times 10^{-4}$

This raction is autocatalyzed and involves complex calculation for concentration terms.

We can look at the above results in a simple way to find the dependence of reaction rate (i.e. rate of disappearance of $Br_2$).

From data (1) and (2) in which concentration of $\mathrm{CH}_3 \mathrm{COCH}_3$ and $\mathrm{H}^{+}$remain unchanged and only the concentration of $\mathrm{Br}_2$ is doubled, there is no change in rate of reaction. It means the rate of reaction is independent of concentration of $\mathrm{Br}_2$. Again from (2) and (3) in which $\left(\mathrm{CH}_3 \mathrm{CO} \mathrm{CH}_3\right)$ and $\left(\mathrm{Br}_2\right)$ remain constant but $\mathrm{H}^{+}$increases from $0.05 \mathrm{M}$ to 0.10 i.e. doubled, the rate of reaction changes from $5.7 \times 10^{-5}$ to $1.2 \times 10^{-4}$ (or $12 \times 10^{-5}$ ), thus it also becomes almost doubled. It shows that rate of reaction is directly proportional to $\left[\mathrm{H}^{+}\right]$. From (3) and (4), the rate should have doubled due to increase in conc of $\left[\mathrm{H}^{+}\right]$from $0.10 \mathrm{M}$ to $0.20 \mathrm{M}$ but the rate has changed from $1.2 \times 10^{-4}$ to $3.1 \times 10^{-4}$. This is due to change in concentration of $\mathrm{CH}_3 \mathrm{COCH}_3$ from $0.30 \mathrm{M}$ to $0.40 \mathrm{M}$. Thus, the rate is directly proportional to $\left[\mathrm{CH}_3 \mathrm{COCH}_3\right]$.

$\text{rate} = k[CH_3COCH_3]^1[Br_2]^0[H^+]^1$

$ =k[CH_3COCH_3][H^+] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ