Equilibrium Ques 2

2. The dissociation equilibrium of a gas $A B_2$ can be represented as :

[2008]

$2 A B_2(g) \rightarrow 2 A B(g)+B_2(g)$

The degree of dissociation is ’ $x$ ’ and is small compared to 1 . The expression relating the degree of dissociation $(x)$ with equilibrium constant $K_p$ and total pressure $P$ is :

(a) $(2 K_p / P)$

(b) $(2 K_p / P)^{1 / 3}$

(c) $(2 K_p / P)^{1 / 2}$

(d) $(K_p / P)$

Show Answer

Solution:

  1. (b) For the reaction

The partial pressure at equilibrium are calculated on the basis of total number of moles at equilibrium.

Total number of moles

$=2(1-x)+2 x+x=(2+x)$

$\therefore \quad P _{A B_2}=\frac{2(1-x)}{(2+x)} \times P$ where $P$ is the total pressure.

$P _{A B}=\frac{2 x}{(2+x)} \times P, P _{B_2}=\frac{x}{(2+x)} \times P$

Since $x$ is very small so can be neglected in denominator

Thus, we get

$ P _{A B_2}=(1-x) \times P \quad P _{A B}=x \times P $ $P _{B_2}=\frac{x}{2} \times P$

Now, $K_P=\frac{(P _{A B})^{2}(P _{B_2})}{(P _{A B_2})^{2}}=\frac{(x)^{2} \times P^{2} \cdot P \times \frac{x}{2}}{(1-x)^{2} \times P^{2}}$

$=\frac{x^{3} \cdot P^{3}}{2 \times 1 \times P^{2}}$

$[\because 1-x \simeq 1]$

$=\frac{x^{3} . P}{2}$ or $x^{3}=\frac{2 . K_p}{P}$ or $x=(\frac{2 K_p}{P})^{\frac{1}{3}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ