Equilibrium Ques 4

4. The values of $K p_1$ and $K p_2$ for the reactions
$X \rightleftharpoons Y+Z$ $\quad$ ……..(a)
and $A \rightleftharpoons 2 B$ $\quad$ ……..(b)
are in the ratio of $9: 1$. If degree of dissociation of $X$ and $A$ be equal, then total pressure at equilibrium for (a) and (b) are in the ratio :

[2008]

(a) $3: 1$

(b) $1: 9$

(c) $36: 1$

(d) $1: 1$

Show Answer

Answer:

Correct Answer: 4.(c)

Solution:

  1. (c) Given reaction are

$X \rightleftharpoons Y+Z$$\quad$ ……..(i)

and $A \rightleftharpoons 2 B$$\quad$ ……..(ii)

Let the total pressure for reaction (i) and (ii) be $P_1$ and $P_2$ respectively, then

$\frac{K _{P_1}}{K _{P_2}}=\frac{9}{1}\quad $(given)

After dissociation,

At equilibrium

$\quad \quad X \quad \rightleftharpoons \quad Y +Z$

$(1-\alpha) \quad \quad\quad \alpha \quad\quad \alpha$

[Let $1$ mole of $X$ dissociate with $\alpha$ as degree of dissociation]

Total number of moles $=1-\alpha+\alpha+\alpha=(1+\alpha)$

Thus $P_X=(\frac{1-\alpha}{1+\alpha}) \cdot P_1 ; P_Y=(\frac{\alpha}{1+\alpha}) P_1$;

$ P_Z=(\frac{\alpha}{1+\alpha}) \cdot P_1 $

$\therefore K _{P_1}=(\frac{\alpha}{1+\alpha}) . P_1 \times \frac{\alpha}{(1+\alpha)}$.

$P_1 /(\frac{1-\alpha}{1+\alpha}) \cdot P_1$ $\quad$ ……..(i)

Similarly for $A \rightleftharpoons 2 B$

At equilibrium $(1-\alpha) 2 \alpha$

We have,

$K _{P_2}=(\frac{2 \alpha P_2}{1+\alpha})^{2} /(\frac{1-\alpha}{1+\alpha}) P_2$$\quad$ ……..(ii)

Dividing (i) by (ii), we get

$\frac{K _{P_1}}{K _{P_2}}=\frac{\alpha^{2} \cdot P_1}{4 \alpha^{2} \cdot P_2}$

or $\frac{K _{P_1}}{K _{P_2}}=\frac{1}{4} \cdot \frac{P_1}{P_2}$ or $9=\frac{1}{4} \cdot \frac{P_1}{P_2}$

$ [\therefore \frac{K _{P_1}}{K _{P_2}}=\frac{9}{1}] $

or $\frac{P_1}{P_2}=\frac{36}{1}$ or $P_1: P_2=36: 1$