Equilibrium Ques 58

58. At $100^{\circ} C$ the $K_w$ of water is 55 times its value at $25^{\circ} C$. What will be the $pH$ of neutral solution? $(\log 55=1.74)$

[NEET Kar. 2013]

(a) 6.13

(b) 7.00

(c) 7.87

(d) 5.13

Show Answer

Solution:

  1. (a) $K_w$ at $25^{\circ} C=1 \times 10^{-14}$

At $25^{\circ} C$

$K_w=[H^{+}][OH^{-}]=10^{-14}$

At $100^{\circ} C$ (given)

$K_w=[H^{+}][OH^{-}]=55 \times 10^{-14}$

$\because$ for a neutral solution

$ [H^{+}]=[OH^{-}] $

$\therefore \quad[H^{+}]^{2}=55 \times 10^{-14}$

or $[H^{+}]=(55 \times 10^{-14})^{1 / 2}$

$\because pH=-\log [H^{+}]$ On taking $\log$ on both side

$ \begin{aligned} & -\log [H^{+}]=-\log (55 \times 10^{-14})^{1 / 2} \\ & pH=\frac{1}{2}(-\log 55+14 \log 10) \\ & pH=6.13 \end{aligned} $

Calculation of $pOH$ in this question: value of $pH$ and $pOH$ must be same for a neutral solution. Thus, $pOH=6.13$, also $pH+pOH=-\log (55 \times 10^{-14})$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ