Equilibrium Ques 62

62. At $25^{\circ} C$, the dissociation constant of a base, $BOH$, is $1.0 \times 10^{-12}$. The concentration of hydroxyl ions in $0.01 M$ aqueous solution of the base would be

[2005]

(a) $1.0 \times 10^{-5} mol L^{-1}$

(b) $1.0 \times 10^{-6} mol L^{-1}$

(c) $2.0 \times 10^{-6} mol L^{-1}$

(d) $1.0 \times 10^{-7} mol L^{-1}$

Show Answer

Solution:

  1. (d) Given $K_b=1.0 \times 10^{-12}$

$[BOH]=0.01 M$

$ \alpha=\sqrt{K_b / c} $

$ =\sqrt{\frac{1 \times 10^{-12}}{0.01}}=1.0 \times 10^{-5} $

Now $[OH^{-}]=c . \alpha=0.01 \times 10^{-5}$

$ =1 \times 10^{-7} mol L^{-1} $

65

(c) $CH_3 COOH \rightarrow CH_3 COO^{-}+H^{+}$

$ K_a=\frac{[CH_3 COO^{-}][H^{+}]}{[CH_3 COOH]} $

Given that,

$[CH_3 COO^{-}]=[H^{+}]=3.4 \times 10^{-4} M$

$K_a$ for $CH_3 COOH=1.7 \times 10^{-5}$

$CH_3 COOH$ is weak acid, so in it $[CH_3 COOH]$ is equal to initial concentration. Hence

$ \begin{aligned} & 1.7 \times 10^{-5}=\frac{(3.4 \times 10^{-4})(3.4 \times 10^{-4})}{[CH_3 COOH]} \\ & \begin{aligned} {[CH_3 COOH] } & =\frac{3.4 \times 10^{-4} \times 3.4 \times 10^{-4}}{1.7 \times 10^{-5}} \\ & =6.8 \times 10^{-3} M \end{aligned} \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ