Structure Of Atom Ques 13

13. If ionization potential for hydrogen atom is $13.6$ $ eV$, then ionization potential for $He^{+}$will be

[1993]

(a) $54.4$ $ eV$

(b) $6.8$ $ eV$

(c) $13.6$ $ eV$

(d) $24.5$ $ eV$

Show Answer

Answer:

Correct Answer: 13.(a)

Solution:

  1. (a) The ionization energy of any hydrogen like species (having one electron only) is given by the equation

I.E $=\frac{2 \pi^{2} Z^{2} m e^{4}}{h^{2}}\quad $ or $\quad$ $I.E$ $\propto Z^{2}$

Since the atomic number of $H$ is $1$ and that of $He$ is $2$ , therefore, the $I.E$. of $He^{+}$is four times $(2^{2})$ the $I.E.$ of $H$ i.e., $13.6 \times 4=54.4$ $ eV$

For $H$-like particles,

$E_n=-\frac{21.8 \times 10^{-19}}{h^{2}} Z^{2} $ $J / atom$

$ =-\frac{1312}{n^{2}} Z^{2} $ $kJ / mol $

$I . E=E _{a_o}-E_1=0-(-I \cdot E_H Z^{2})$

$=Z^{2} \times I_E H$

Now for $He^{+}, Z=2 \quad \therefore \quad I . E=4 \times I_H$

$ \text{ for } Li^{2+}, Z=3 \quad \therefore \quad I . E=9 \times I_H $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ