Structure Of Atom Ques 26

26. Uncertainty in position of an electron $(.$ mass $.=9.1 \times 10^{-28} g)$ moving with a velocity of $3 \times 10^{4} cm / s$ accurate upto $0.001 \%$ will be (use $h / 4(\pi)$ in uncertainty expression where $h=6.626 \times 10^{-27}$ erg-second)

[1995]

(a) $1.93 cm$

(b) $3.84 cm$

(c) $5.76 cm$

(d) $7.68 cm$

Show Answer

Solution:

  1. (a) Given mass of an electron $(m)=9.1 \times 10^{-28} g$; Velocity of electron $(v)=3 \times 10^{4} cm / s$;

Accuracy in velocity $=0.001 \%=\frac{0.001}{100}$;

Actual velocity of the electron

$(\Delta v)=3 \times 10^{4} \times \frac{0.001}{100}=0.3 cm / s$.

Planck’s constant $(h)=6.626 \times 10^{-27}$ erg-sec. $\therefore$ Uncertainty in the position of the electron

$ (\Delta x)=\frac{h}{4 \pi m \Delta v}=\frac{6.626 \times 10^{-27} \times 7}{\begin{matrix} 4 \times 22 \times(9.1 \times 10^{-28}) \times 0.3 \\ =1.93 cm \end{matrix} } $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ