The Solid State Ques 16

16. If ’ $a$ ’ stands for the edge length of the cubic systems : simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively,

[2008]

(a) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$

(b) $\frac{1}{2} a: \sqrt{3} a: \frac{1}{\sqrt{2}} a$

(c) $\frac{1}{2} a: \frac{\sqrt{3}}{2} a: \frac{\sqrt{3}}{2} a$

(d) $a: \sqrt{3} a: \sqrt{2} a$

Show Answer

Solution:

  1. (a) Following generalization can be easily derived for various types of lattice arrangements in cubic cells between the edge length $(a)$ of the cell and $r$ the radius of the sphere.

For simple cubic : $a=2 r$ or $r=\frac{a}{2}$

For body centred cubic :

$a=\frac{4}{\sqrt{3}} r$ or $r=\frac{\sqrt{3}}{4} a$

For face centred cubic :

$a=2 \sqrt{2} r$ or $r=\frac{1}{2 \sqrt{2}} a$

Thus the ratio of radii of spheres will be simple : bcc : fcc

$=\frac{a}{2}: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ