Alternating Current Ques 18

18. A condenser of capacity $C$ is charged to a potential difference of $V_1$. The plates of the condenser are then connected to an ideal inductor of inductance $L.$ The current through the inductor when the potential difference across the condenser reduces to $V_2$ is

[2010]

(a) $(\frac{C(V_1^{2}-V_2^{2})}{L})^{1 / 2}$

(b) $(\frac{C(V_1-V_2)^{2}}{L})^{1 / 2}$

(c) $\frac{C(V_1^{2}-V_2^{2})}{L}$

(d) $\frac{C(V_1-V_2)}{L}$

Show Answer

Answer:

Correct Answer: 18.(a)

Solution:

  1. (a) $q=C V_1 \cos \omega$

$\Rightarrow i=\frac{d q}{d t}=-\omega C v_1 \sin \omega t$

Also, $\omega^{2}=\frac{1}{L C}$ and $V=V_1 \cos \omega t$

At $t=t_1, V=V_2$ and $i=-\omega C V_1 \sin \omega t_1$

$\therefore \cos \omega t_1=\frac{V_2}{V_1}$ (-ve sign gives direction)

Hence, $i=V_1 \sqrt{\frac{C}{L}}(1-\frac{V_2^{2}}{V_1^{2}})^{1 / 2}$

$=(\frac{C(V_1^{2}-V_2^{2})}{L})^{1 / 2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ