Alternating Current Ques 21
21. A coil of inductive reactance $31 $ $\Omega$ has a resistance of $8$ $ \Omega$. It is placed in series with a condenser of capacitative reactance $25 $ $\Omega$. The combination is connected to an $a.c.$ source of $110$ volt. The power factor of the circuit is
[2006]
(a) $0.64$
(b) $0.80$
(c) $0.33$
(d) $0.56$
Show Answer
Answer:
Correct Answer: 21.(b)
Solution:
- (b) Power factor, $\phi=\frac{R}{\sqrt{(\omega L-\frac{1}{\omega C})^{2}+R^{2}}}$
$ =\frac{8}{\sqrt{(31-25)^{2}+8^{2}}}=\frac{8}{\sqrt{6^{2}+8^{2}}}=\frac{8}{10}=0.8 $
Power factor $=\cos \theta=\frac{R}{Z}$
For purely inductive and purely capacitive circuits, $\theta=90^{\circ}$
Power factor $=\cos \theta=\cos 90^{\circ}=\theta$ For non-inductive circuit, $\theta=0^{\circ}$ $\cos \theta=\cos 0^{\circ}=1$