Alternating Current Ques 21

21. A coil of inductive reactance $31 $ $\Omega$ has a resistance of $8$ $ \Omega$. It is placed in series with a condenser of capacitative reactance $25 $ $\Omega$. The combination is connected to an $a.c.$ source of $110$ volt. The power factor of the circuit is

[2006]

(a) $0.64$

(b) $0.80$

(c) $0.33$

(d) $0.56$

Show Answer

Answer:

Correct Answer: 21.(b)

Solution:

  1. (b) Power factor, $\phi=\frac{R}{\sqrt{(\omega L-\frac{1}{\omega C})^{2}+R^{2}}}$

$ =\frac{8}{\sqrt{(31-25)^{2}+8^{2}}}=\frac{8}{\sqrt{6^{2}+8^{2}}}=\frac{8}{10}=0.8 $

Power factor $=\cos \theta=\frac{R}{Z}$

For purely inductive and purely capacitive circuits, $\theta=90^{\circ}$

Power factor $=\cos \theta=\cos 90^{\circ}=\theta$ For non-inductive circuit, $\theta=0^{\circ}$ $\cos \theta=\cos 0^{\circ}=1$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ