Alternating Current Ques 26
26. In an experiment, $200$ $V$ $A.C.$ is applied at the ends of an $LCR$ circuit. The circuit consists of an inductive reactance $(X_L)=50 $ $\Omega$, capacitive reactance $(X_C)=50 $ $\Omega$ and ohmic resistance $(R)$ $=10 $ $\Omega$. The impedance of the circuit is
[1996]
(a) $10$ $ \Omega$
(b) $20 $ $\Omega$
(c) $30 $ $\Omega$
(d) $40$ $ \Omega$
Show Answer
Answer:
Correct Answer: 26.(a)
Solution:
- (a) Given: Supply voltage $(V _{a c})=200$ $ V$
Inductive reactance $(X_L)=50 $ $\Omega$
Capacitive reactance $(X_C)=50 $ $\Omega$
Ohmic resistance $(R)=10 $ $\Omega$.
We know that impedance of the $LCR$ circuit $(Z)$
$=\sqrt{{(X_L-X_C)^{2}+R^{2}}}$
$=\sqrt{{(50-50)^{2}+(10)^{2}}}=10 $ $\Omega$