Alternating Current Ques 36

36. The instantaneous values of alternating current and voltages in a circuit are given as

$\begin{aligned} & i=\frac{1}{\sqrt{2}} \sin (100 \pi t) \text{ amper } \\ & e=\frac{1}{\sqrt{2}} \sin (100 \pi t+\pi / 3) \text{ Volt } \end{aligned}$

The average power in Watts consumed in the circuit is :

(a) $\frac{1}{4}$

(b) $\frac{\sqrt{3}}{4}$

(c) $\frac{1}{2}$

(d) $\frac{1}{8}$

Show Answer

Answer:

Correct Answer: 36.(d)

Solution:

  1. (d) The average power in the circuit where $\cos \phi=$ power factory

$\langle P \rangle = V _{\text{rms}} \times I _{\text{rms}} \times \cos \phi$

$\phi=\pi / 3=$ phase difference $=\frac{180}{3}=60$

$V _{rms}=\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}=\frac{1}{2}$ volt

$I _{rms}=\frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}=(\frac{1}{2}) A$

$\cos \phi=\cos \frac{\pi}{3}=\frac{1}{2}$

$\langle P \rangle =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8} W$

The instantaneous power is the power in circuit at any instant of time. It is equal to the product of values of alternating voltage and alternating current at that time

$P _{\text{in }}=EI=(E_0 \sin \omega t)(I_0 \sin \omega t)$

(in non-inductive circuit)

$P _{\text{in }}=(E_0 \sin \omega t)(I_0 \sin \omega t \pm \theta)$

(in inductive circuit)



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ