Atoms Ques 12

12. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelength $\lambda_1: \lambda_2$ emitted in the two cases is

[2012]

(a) $7 / 5$

(b) $27 / 20$

(c) $27 / 5$

(d) $20 / 7$

Show Answer

Answer:

Correct Answer: 12.(d)

Solution:

  1. (d)

According to Rydberg formula

$\frac{1}{\lambda}=R[\frac{1}{n_f^{2}}-\frac{1}{n_i^{2}}]$

In first case, $n_f=3, n_i=4$

$\therefore \frac{1}{\lambda_1}=R[\frac{1}{3^{2}}-\frac{1}{4^{2}}]=R[\frac{1}{9}-\frac{1}{16}]=\frac{7}{144} R \quad$ ……(i)

In second case, $n_f=2, n_i=3$

$\therefore \frac{1}{\lambda_2}=R[\frac{1}{2^{2}}-\frac{1}{3^{2}}]=R[\frac{1}{4}-\frac{1}{9}]=\frac{5}{36} R \quad$ …..(ii)

Divide (ii) by (i), we get

$\frac{\lambda_1}{\lambda_2}=\frac{5}{36} \times \frac{144}{7}=\frac{20}{7}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ