Atoms Ques 6

6. Given the value of Rydberg constant is $10^{7} m^{-1}$, the wave number of the last line of the Balmer series in hydrogen spectrum will be : [2016]

(a) $0.025 \times 10^{4} m^{-1}$

(b) $0.5 \times 10^{7} m^{-1}$

(c) $0.25 \times 10^{7} m^{-1}$

(d) $2.5 \times 10^{7} m^{-1}$

Show Answer

Answer:

Correct Answer: 6.(c)

Solution:

  1. (c) According to Bohr’s theory, the wave number of the last line of the Balmer series in hydrogen spectrum,

For hydrogen atom $Z=1$

$\frac{1}{\lambda}=RZ^{2}(\frac{1}{n_2^{2}}-\frac{1}{n_1^{2}})$

$=10^{7} \times 1^{2}(\frac{1}{2^{2}}-\frac{1}{\infty^{2}})$

$\Rightarrow$ wave number $\frac{1}{\lambda}=0.25 \times 10^{7} m^{-1}$

Last line of the series is called series limit. For this line wavelength is minimum $(\lambda _{\min })$.

For minimum wavelength, $n_2=\infty, n_1=n$

So, wavelength $\lambda _{\min }=\frac{n^{2}}{R}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ