Current Electricity Ques 105

105. A resistance wire connected in the left gap of a metre bridge balances a $10 \Omega$ resistance in the right gap at a point which divides the bridge wire in the ratio $3: 2$. If the length of the resistance wire is $1.5 m$, then the length of $1 \Omega$ of the resistance wire is :

[2020]

(a) $1.0 \times 10^{-1} m$

(b) $1.5 \times 10^{-1} m$

(c) $1.5 \times 10^{-2} m$

(d) $1.0 \times 10^{-2} m$

Show Answer

Answer:

Correct Answer: 105.(a)

Solution:

  1. (a) Let $R_1$ be the resistance of resistance wire.

From the balancing condition of metre bridge,

$ \frac{R_1}{10}=\frac{\ell_1}{\ell_2}=\frac{3}{2} \Rightarrow R_1=\frac{30}{2}=15 \Omega $

Length of $15 \Omega$ resistance wire is $1.5 m$.

$\therefore$ Length of $1 \Omega$ resistance wire

$=\frac{1.5}{15}=0.1 m=1.0 \times 10^{-1} m$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ