Dual Nature Of Radiation And Matter Ques 14

14. The wavelength associated with an electron, accelerated through a potential difference of $100$ $V$, is of the order of

[1996]

(a) $1000 $ $\AA$

(b) $100 $ $\AA$

(c) $10.5 $ $\AA$

(d) $1.2 $ $\AA$

Show Answer

Answer:

Correct Answer: 14.(d)

Solution:

  1. (d) Potential difference $=100 $ $V$

K.E. acquired by electron $=e(100)$

$ \frac{1}{2} m v^{2}=e(100) \Rightarrow v=\sqrt{\frac{2 e(100)}{m}} $

According to de Broglie’s concept

$ \begin{aligned} & \lambda=\frac{h}{m \nu} \quad \Rightarrow \lambda=\frac{h}{m \sqrt{\frac{2 e(100)}{m}}} \\ & =\frac{h}{\sqrt{2 m e(100)}}=1.2 \times 10^{-10}=1.2 \AA \end{aligned} $

de-Broglie wavelength, $\lambda_e=\frac{h}{p}=\frac{h}{\sqrt{2 m E}}$

Here, $h=$ planck’s constant

$m=$ mass of electron

Kinetic energy, $E=eV$

Here, $V=$ potential difference

$ \therefore \lambda_e \frac{h}{\sqrt{2 m_e e V}} $

Substituting h $=6.63 \times 10^{-34} $ $Js$

$e=1.6 \times 10^{-19} $ $C$

$m_e=9.1 \times 10^{-31}$ $ kg$

we get $\lambda_e=\frac{12.27}{\sqrt{V}} $ $A$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ