Dual Nature Of Radiation And Matter Ques 60

60. An electron of mass $m$ and a photon have same energy $E$. The ratio of de-Broglie wavelengths associated with them is :

[2016]

(a) $\frac{1}{c}(\frac{E}{2 m})^{\frac{1}{2}}$

(b) $(\frac{E}{2 m})^{\frac{1}{2}}$

(c) $c(2 mE)^{\frac{1}{2}}$

(d) $\frac{1}{xc}(\frac{2 m}{E})^{\frac{1}{2}}$

Show Answer

Answer:

Correct Answer: 60.(a)

Solution:

  1. (a) For electron De-Broglie wavelength,

$\lambda_e=\frac{h}{\sqrt{2 mE}}$

For photon $E=pc$

$\Rightarrow$ De-Broglie wavelength, $\lambda _{Ph}=\frac{hc}{E}$

$\therefore \quad \frac{\lambda_e}{\lambda _{Ph}}=\frac{h}{\sqrt{2 mE}} \times \frac{E}{hc}=(\frac{E}{2 m})^{1 / 2} \frac{1}{c}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ