Dual Nature Of Radiation And Matter Ques 81

[2013]

(a) $\lambda_p \propto \lambda_e$

(b) $\lambda_p \propto \sqrt{\lambda_e}$

(c) $\lambda_p \propto \frac{1}{\sqrt{\lambda_e}}$

(d) $\lambda_p \propto \lambda_e^{2}$

Show Answer

Answer:

Correct Answer: 81.(d)

Solution:

  1. (d) As $P=\frac{E}{c}$

$\lambda_p=\frac{hc}{E}$$\quad$ …….(i)

$\lambda_e=\frac{h}{\sqrt{2 mE}} \Rightarrow \lambda_e^{2}=\frac{h^{2}}{2 mE}$$\quad$ …….(ii)

From equations (i) and (ii)

$\lambda_p \propto \lambda_e^{2}$

de-Broglie wavelength, $\lambda=\frac{h}{p}$

Here, $h=$ plank’s constant

$p=$ momentum

Momentum, $p=\sqrt{2 m k}$

$\therefore \lambda=\frac{h}{\sqrt{2 m E}} \quad$ (Here, $E=$ kinetic energy)

$\therefore E=\frac{h^{2}}{2 m \lambda^{2}} \quad \Rightarrow \lambda^{2}=\frac{h^{2}}{2 m E}$