Electric Charges And Fields Ques 19

19. A semi-circular arc of radius ’ $a$ ’ is charged uniformly and the charge per unit length is $\lambda$. The electric field at the centre of this arc is

[2000]

(a) $\frac{\lambda}{2 \pi \varepsilon_0 a}$

(b) $\frac{\lambda}{2 \pi \varepsilon_0 a^{2}}$

(c) $\frac{\lambda}{4 \pi^{2} \varepsilon_0 a}$

(d) $\frac{\lambda^{2}}{2 \pi \varepsilon_0 a}$

Show Answer

Answer:

Correct Answer: 19.(a)

Solution:

  1. (a) $\lambda=$ linear charge density;

Charge on elementary portion $d x=\lambda d x$.

<img src=“https://cdn.mathpix.com/cropped/2024_02_27_f643d9ce406fbb702fc8g-188.jpg?height=325&width=328&top_left_y=2171&top_left_x=1321)

Electric field at $O, d E=\frac{\lambda d x}{4 \pi \varepsilon_0 a^{2}}$

Horizontal electric field, i.e., perpendicular to $A O$, will be cancelled.

Hence, net electric field $=$ addition of all electrical fields in direction of $A O$

$=\Sigma d E \cos \theta$

$\Rightarrow E=\int \frac{\lambda d x}{4 \pi \varepsilon_0 a^{2}} \cos \theta$

Also, $d \theta=\frac{d x}{a}$ or $d x=a d \theta$

$E=\int _{-\pi / 2}^{\pi / 2} \frac{\lambda \cos \theta d \theta}{4 \pi \varepsilon_0 a}=\frac{\lambda}{4 \pi \varepsilon_0 a}[\sin \theta] _{-\pi / 2}^{\pi / 2}$

$=\frac{\lambda}{4 \pi \varepsilon_0 a}[1-(-1)]=\frac{\lambda}{2 \pi \varepsilon_0 a}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ