Electromagnetic Induction Ques 12

12. A long solenoid of diameter $0.1 $ $m$ has $2 \times 10^{4}$ turns per meter. At the centre of the solenoid, a coil of $100 $ turns and radius $0.01$ $ m$ is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to $0 $ $A$ from $4 $ $A$ in $0.05 $ $s$. If the resistance of the coil is $10 \pi^{2} \Omega$. the total charge flowing through the coil during this time is :-

[2017]

(a) $16 $ $\mu C$

(b) $32 $ $\mu C$

(c) $16 \pi $ $\mu C$

(d) $32 \pi $ $\mu C$

Show Answer

Answer:

Correct Answer: 12.(b)

Solution:

  1. (b) Given, no. of turns $N=100$

radius, $r=0.01 $ $m$

resistance, $R=10 \pi^{2} \Omega, n=2 \times 10^{4}$

As we know,

$\varepsilon=-N \frac{d \phi}{dt} \Rightarrow \frac{\varepsilon}{R}=-\frac{N}{R} \frac{d \phi}{dt}$

$\Delta I=-\frac{N}{R} \frac{d \phi}{dt} \Rightarrow \frac{\Delta q}{\Delta t}=-\frac{N}{R} \frac{\Delta \phi}{\Delta t}$

$\Delta q=-[\frac{N}{R}(\frac{\Delta \phi}{\Delta t})] \Delta t$

‘-’ ve sign shows that induced emf opposes the change of flux.

$ \begin{aligned} \Delta q & =[\mu_0 n N \pi r^{2}(\frac{\Delta i}{\Delta t})] \frac{1}{R} \Delta t=\frac{\mu_0 n N \pi r^{2} \Delta i}{R} \\ \Delta q & =\frac{4 \pi \times 10^{-7} \times 100 \times 4 \times \pi \times(0.01)^{2} \times 2 \times 10^{4}}{10 \pi^{2}} \\ \Delta q & =32 \mu C \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ