Electrostatic Potential And Capacitance Ques 27

27. A series combination of $n_1$ capacitors, each of value $C_1$, is charged by a source of potential difference $4 $ $V$. When another parallel combination of $n_2$ capacitors, each of value $C_2$, is charged by a source of potential difference $V$, it has the same (total) energy stored in it, as the first combination has. The value of $C_2$, in terms of $C_1$, is then

[2010]

(a) $\frac{2 C_1}{n_1 n_2}$

(b) $16 \frac{n_2}{n_1} C_1$

(c) $2 \frac{n_2}{n_1} C_1$

(d) $\frac{16 C_1}{n_1 n_2}$

Show Answer

Answer:

Correct Answer: 27.(d)

Solution:

  1. (d) In series, $C _{eff}=\frac{C_1}{n_1}$

$\therefore \quad$ Energy stored,

$E_S=\frac{1}{2} C _{e f V_S} V_S^{2}=\frac{1}{2} \frac{C_1}{n_1} 16 V^{2}$

$=8 V^{2} \frac{C_1}{n_1}$

In parallel, $C _{eff}=n_2 C_2$

$\therefore \quad$ Energy stored, $E_p=\frac{1}{2} n_2 C_2 V^{2}$

According to question $E_s=E_p$

$\therefore \quad \frac{8 V^{2} C_1}{n_1}=\frac{1}{2} n_2 C_2 V^{2}$

$\Rightarrow C_2=\frac{16 C_1}{n_1 n_2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ