Electrostatic Potential And Capacitance Ques 47

47. Four point charges $-Q,-q, 2 q$ and $2 Q$ are placed, one at each corner of the square. The relation between $Q$ and $q$ for which the potential at the centre of the square is zero is :

[2012]

(a) $Q=-q$

(b) $Q=-\frac{1}{q}$

(c) $Q=q$

(d) $Q=\frac{1}{q}$

Show Answer

Answer:

Correct Answer: 47.(a)

Solution:

  1. (a) Let the side length of square be ’ $a$ ’ then potential at centre $O$ is

$ \begin{aligned} & A C=B D=\sqrt{a^{2}+a^{2}}=a \sqrt{2} \\ & O A=O B=O C=O D=\frac{a \sqrt{2}}{2}=\frac{a}{\sqrt{2}} \end{aligned} $

$ \begin{aligned} V & =\frac{k(-Q)}{(\frac{a}{\sqrt{2}})}+\frac{k(-q)}{\frac{a}{\sqrt{2}}}+\frac{k(2 q)}{\frac{a}{\sqrt{2}}}+\frac{k(2 Q)}{\frac{a}{\sqrt{2}}}=0 \\ & =-Q-q+2 q+2 Q=0 \Rightarrow Q+q=0 \\ & \Rightarrow Q=-q \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ