Gravitation Ques 1

1. The work done to raise a mass $\mathrm{m}$ from the surface of the earth to a height $h$, which is equal to the radius of the earth, is :

[2019]

(a) $\mathrm{mgR}$

(b) $2 $ $\mathrm{mgR}$

(c) $\frac{1}{2} $ $\mathrm{mgR}$

(d) $\frac{3}{2} $ $\mathrm{mgR}$

Show Answer

Answer:

Correct Answer: 1.(c)

Solution: (c) Mass to be raised = $m$

Potential energy at the surface of the earth

$ U_{\text {surface }}=\frac{-G M m}{R} $

Potential energy at a height from the surface of the earth $h=\mathrm{R}$

$ U_{\text {height }}=\frac{-G M m}{2 R} $

According to work-energy theorem, work done $=$ change in $\mathrm{PE}$

$ \begin{aligned} & \therefore \mathrm{W}=\mathrm{U} _{\text {height }}-\mathrm{U} _{\text {surface }} \\ & \Rightarrow \frac{-G M m}{2 R}-\left(-\frac{G M m}{R}\right) \\ & =\frac{G M m}{2 R}=\frac{g R^2 m}{2 R}=\frac{m g R}{2} \quad \left(\because \mathrm{GM}=\mathrm{gR}^2\right) \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ