Gravitation Ques 24

24. A body of mass ’ $m$ ’ is taken from the earth’s surface to the height equal to twice the radius (R) of the earth. The change in potential energy of body will be

[2013]

(a) $\frac{2}{3} $ $mgR$

(b) $3 $ $mgR$

(c) $\frac{1}{3} $ $mgR$

(d) $mg 2 R$

Show Answer

Answer:

Correct Answer: 24.(a)

Solution:

  1. (a) Initial P. E., $U_i=\frac{-GMm}{R}$,

Final P.E., $U_f=\frac{-GMm}{3 R}\quad [\because R^{\prime}=R+2 R=3 R]$

$\therefore$ Change in potential energy,

$\Delta U=\frac{-GMm}{3 R}+\frac{GMm}{R}$

$=\frac{GMm}{R}(1-\frac{1}{3})=\frac{2}{3} \frac{GMm}{R}=\frac{2}{3} $ $mgR$

$(\because \frac{GMm}{R}=mgR)$

$\Delta U=\frac{m g h}{1+\frac{h}{R}}$

By placing the value of $h=2 R$ we get

$\Delta U=\frac{2}{3}$ $ mgR$.

Work done against gravitational forces in taking a body of mass $m$ from the surface of earth to a height $h$ is the change in potential energy of the body and is given by

$ \Delta u=\frac{G M m h}{R(R+h)} $

(a) if $h < < R$, then $W=\frac{G M m h}{R(R+h)}$

(b) if $h=R$, then $W=\frac{G M m}{2 R}=\frac{1}{2} m g h$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ