Gravitation Ques 27

27. The figure shows elliptical orbit of a planet $m$ about the sun $S$. The shaded area $SCD$ is twice the shaded area $S A B$. If $t_1$ is the time for the planet to move from $C$ to $D$ and $t_2$ is the time to move from $A$ to $B$ then :

[2009]

(a) $t_1=4 t_2$

(b) $t_1=2 t_2$

(c) $t_1=t_2$

(d) $t_1>t_2$

Show Answer

Answer:

Correct Answer: 27.(b)

Solution:

  1. (b) According to Kepler’s law, the areal velocity of a planet around the sun always remains constant.

$SCD: A_1-t_1$ (areal velocity constant)

$SAB: A_2-t_2$

$\frac{A_1}{t_1}=\frac{A_2}{t_2}$,

$t_1=t_2 \cdot \frac{A_1}{A_2} \quad($ given $A_1=2 A_2)$

$ \begin{aligned} & =t_2 \cdot \frac{2 A_2}{A_2} \\ & \therefore \quad t_1=2 t_2 \end{aligned} $

The area covered by radius vector in $d t$ seconds $=$

$\frac{1}{2} r^{2} d \theta$

$ \begin{gathered} \text{ Area velocity }=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega \quad(\because \omega \frac{d \theta}{d t}) \\ =\frac{1}{2} r v \quad(\because v=\omega r) \end{gathered} $

It follows that speed of the planet is maximum when it is closest to the sun and is minimum when the planet is farthest from the sun.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ