Gravitation Ques 3

3. The ratio of escape velocity at earth $\left(v_e\right)$ to the escape velocity at a planet $\left(v_p\right)$ whose radius and mean density are twice as that of earth is :

[2016]

(a) $1: 2$

(b) $1: 2 \sqrt{2} $

(c) $1: 4$

(d) $1: 2$

Show Answer

Answer:

Correct Answer: 3.(b)

Solution: (b) As we know, escape velocity,

$ \begin{aligned} & v_e=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}=\sqrt{\frac{2 \mathrm{G}}{\mathrm{R}} \cdot\left(\frac{4}{3} \pi \mathrm{R}^3 \rho\right)} \\ & v_e \propto \mathrm{R} \sqrt{\rho} \\ & \therefore \quad \frac{\mathrm{V} _{\mathrm{e}}}{\mathrm{V} _{\mathrm{p}}}=\frac{\mathrm{R} _{\mathrm{e}}}{\mathrm{R} _{\mathrm{p}}} \sqrt{\frac{\rho _{\mathrm{e}}}{\rho _{\mathrm{p}}}} \\ & \Rightarrow \quad \frac{\mathrm{V} _{\mathrm{e}}}{\mathrm{V} _{\mathrm{p}}}=\frac{\mathrm{R} _{\mathrm{e}}}{2 \mathrm{R} _{\mathrm{e}}} \sqrt{\frac{\rho _{\mathrm{e}}}{2 \rho _{\mathrm{e}}}} \\ & \therefore \quad \text { Ratio } \frac{\mathrm{V} _{\mathrm{e}}}{\mathrm{V} _{\mathrm{p}}}=1: 2 \sqrt{2} \end{aligned} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ