Gravitation Ques 36

36. A remote - sensing satellite of earth revolves in a circular orbit at a height of $0.25 \times 10^{6} m$ above the surface of earth. If earth’s radius is $6.38 \times 10^{6} $ $m$ and $g=9.8$ $ ms^{-2}$, then the orbital speed of the satellite is:

[2015 RS]

(a) $8.56 $ $km $ $s^{-1}$

(b) $9.13 $ $km $ $s^{-1}$

(c) $6.67 $ $km $ $s^{-1}$

(d) $7.76 $ $km $ $s^{-1}$

Show Answer

Answer:

Correct Answer: 36.(d)

Solution:

  1. (d) Given: Height of the satellite from the earth’s surface $h=0.25 \times 10^{6} $ $m$

Radius of the earth $R=6.38 \times 10^{6}$ $ m$

Acceleration due to gravity $g=9.8 $ $m / s^{2}$ Orbital velocity, $v_0=$ ?

$v_0=\sqrt{\frac{GM}{(R+h)}}=\sqrt{\frac{GM}{R^{2}} \cdot \frac{R^{2}}{(R+h)}}$

$=\sqrt{\frac{9.8 \times 6.38 \times 6.38}{6.63 \times 10^{6}}} $

$=7.76 $ $km / s \quad {[\because \frac{GM}{R^{2}}=g]}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ