Gravitation Ques 36

36. A remote - sensing satellite of earth revolves in a circular orbit at a height of $0.25 \times 10^{6} m$ above the surface of earth. If earth’s radius is $6.38 \times 10^{6} $ $m$ and $g=9.8$ $ ms^{-2}$, then the orbital speed of the satellite is:

[2015 RS]

(a) $8.56 $ $km $ $s^{-1}$

(b) $9.13 $ $km $ $s^{-1}$

(c) $6.67 $ $km $ $s^{-1}$

(d) $7.76 $ $km $ $s^{-1}$

Show Answer

Answer:

Correct Answer: 36.(d)

Solution:

  1. (d) Given: Height of the satellite from the earth’s surface $h=0.25 \times 10^{6} $ $m$

Radius of the earth $R=6.38 \times 10^{6}$ $ m$

Acceleration due to gravity $g=9.8 $ $m / s^{2}$ Orbital velocity, $v_0=$ ?

$v_0=\sqrt{\frac{GM}{(R+h)}}=\sqrt{\frac{GM}{R^{2}} \cdot \frac{R^{2}}{(R+h)}}$

$=\sqrt{\frac{9.8 \times 6.38 \times 6.38}{6.63 \times 10^{6}}} $

$=7.76 $ $km / s \quad {[\because \frac{GM}{R^{2}}=g]}$