Gravitation Ques 41

[2012M]

(a) $v_0=\sqrt{2} v_e$

(b) $v_0=v_e$

(c) $v_e=\sqrt{2 v_0}$

(d) $v_e=\sqrt{2} v_0$

Show Answer

Answer:

Correct Answer: 41.(d)

Solution:

  1. (d) $v_e=\sqrt{\frac{2 G M}{R}} \Rightarrow v_0=\sqrt{\frac{G M}{R}}$

$v_e=\sqrt{2} v_0$

The orbital velocity of a satellite at a height $h$ above the surface of earth,

$v_0=\sqrt{\frac{G M}{(R+h)}}=\sqrt{\frac{g R^{2}}{(R+h)}} \quad (\because G M=g R^{2})$

Here, $M=$ mass of earth,

$R=$ radius of earth,

$g=$ acceleration due to If the satellite is very close to the surrface of earth gravity earth on surface of then $h=0$

$\therefore \quad v_0=\sqrt{\frac{g R^{2}}{R}}=\sqrt{g R}=\sqrt{\frac{G M}{R}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ