Gravitation Ques 47

47. The escape velocity on the surface of earth is $11.2$ $ km / s$. What would be the escape velocity on the surface of another planet of the same mass but $1 / 4$ times the radius of the earth?

[2000]

(a) $22.4 $ $km / s$

(b) $44.8$ $ km / s$

(c) $5.6 $ $km / s$

(d) $11.2 $ $km / s$

Show Answer

Answer:

Correct Answer: 47.(a)

Solution:

  1. (a) $v _{\text{earth }}=\sqrt{\frac{2 G M_e}{R_e}}$

$v _{\text{planet }}=\sqrt{\frac{2 G M_p}{R_p}}=\sqrt{\frac{2 G M_e}{R_e / 4}}=\sqrt{\frac{8 G M_e}{R_e}}$

$\frac{v _{\text{planet }}}{v _{\text{earth }}}=\sqrt{\frac{8 G M_e}{R_e}} \times \sqrt{\frac{R_e}{2 G M_e}}=2$

$\therefore v _{\text{planet }}=2 \times v _{\text{earth }}=2 \times 11.2=22.4 $ $km / s$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ