Gravitation Ques 50

50. The escape velocity of a body on the surface of the earth is $11.2$ $ km / s$. If the earth’s mass increases to twice its present value and the radius of the earth becomes half, the escape velocity would become

[1997]

(a) $44.8 $ $km / s$

(b) $22.4 $ $km / s$

(c) $11.2 $ $km / s$ (remains unchanged)

(d) $5.6 $ $km / s$

Show Answer

Answer:

Correct Answer: 50.(b)

Solution:

  1. (b) Escape velcocity

$v_e=\sqrt{\frac{2 G M_e}{R_e}}, v_e^{\prime}=\sqrt{\frac{2 G M_e^{\prime}}{R_e^{\prime}}}$

$\therefore \frac{v_e^{\prime}}{v_e}=\sqrt{\frac{M_e^{\prime}}{M_e} \times \frac{R_e}{R_e^{\prime}}}$

Given $M_e^{\prime}=2 M_e$ and $R_e^{\prime}=\frac{R_e}{2}$

$\therefore \frac{v_e^{\prime}}{v_e}=\sqrt{\frac{2 M_e}{M_e} \times \frac{R_e}{R_e / 2}}=\sqrt{4}=2$

$v_e^{\prime}=2 v_e=2 \times 11.2=22.4 $ $km / s$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ