Gravitation Ques 54

54. The escape velocity from earth is $11.2 $ $km / s$. If a body is to be projected in a direction making an angle $45^{\circ}$ to the vertical, then the escape velocity is

[1993]

(a) $11.2 \times 2 $ $km / s$

(b) $11.2 $ $km / s$

(c) $11.2 / \sqrt{2} $ $km / s$

(d) $11.2 \sqrt{2} $ $km / s$

Show Answer

Answer:

Correct Answer: 54.(b)

Solution:

  1. (b) Escape velocity does not depend on the angle of projection.

The value of escape velocity is given by

$ V_e=\sqrt{\frac{2 G M}{R}} $

Here, $M=$ mass of earth, $G=$ gravitational constant $R=$ radius of earth

$ \begin{aligned} V_e & =\sqrt{\frac{2 G M}{R^{2}}} \\ & =\sqrt{\frac{2 \times G}{R^{2}} \times \frac{4}{3} \pi R^{3} \rho} \quad(\because M=\frac{4}{3} \pi R^{3} \rho) \\ V_e & =R \sqrt{\frac{8 \pi G \rho}{3}} \end{aligned} $

Thus, value of escape velocity depends upon the mass $M$, density $\rho$ and radius $R$ of earth/planet from which the body is projected and independent of angle of projection.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ