Laws Of Motion Ques 41

41. A block $A$ of mass $m_1$ rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass $m_2$ is suspended. The coefficient of kinetic friction between the block and the table is $\mu_k$. When the block A is sliding on the table, the tension in the string is

[2015]

(a) $\frac{(m_2-\mu km_1) g}{(m_1+m_2)}$

(b) $\frac{m_1 m_2(1+\mu_k) g}{(m_1+m_2)}$

(c) $\frac{m_1 m_2(1-\mu_k) g}{(m_1+m_2)}$

(d) $\frac{(m_2+\mu_k m_1) g}{(m_1+m_2)}$

Show Answer

Answer:

Correct Answer: 41.(b)

Solution:

  1. (b) For the motion of both blocks

$m_1 a=T-\mu_k m_1 g$

$m_2 g-T=m_2 a$

$a=\frac{m_2 g-\mu_k m_1 g}{m_1+m_2}$

$m_2 g-T=(m_2)(\frac{m_2 g-\mu_k m_1 g}{m_1+m_2})$

Solving, we get tension in the string

$ T=\frac{m_1 m_2 g (1+\mu_k)}{m_1+m_2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ