Laws Of Motion Ques 54

54. Starting from rest, a body slides down a $45^{\circ}$ inclined plane in twice the time it takes to slide down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is

[1988]

(a) 0.80

(b) 0.75

(c) 0.25

(d) 0.33

Show Answer

Answer:

Correct Answer: 54.(b)

Solution:

  1. (b) In presence of friction $a=(g \sin \theta-\mu g \cos \theta)$

$\therefore$ Time taken to slide down the plane

$t_1=\sqrt{\frac{2 s}{a}}=\sqrt{\frac{2 s}{g(\sin \theta-\mu \cos \theta)}}$

In absence of friction, $t_2=\sqrt{\frac{2 s}{g \sin \theta}}$

According to the condition,

$t_1=2 t_2 \quad \therefore t_1^{2}=4 t_2^{2}$

or $\frac{2 s}{g(\sin \theta-\mu \cos \theta)}=\frac{2 s \times 4}{g \sin \theta}$

$\sin \theta=4 \sin \theta-4 \mu \cos \theta$

$\mu=\frac{3}{4} \tan \theta=\frac{3}{4}=0.75$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ