Mechanical Properties Of Fluids Ques 14

14. The approximate depth of an ocean is $2700$ $ m$. The compressibility of water is $45.4 \times 10^{-11} Pa^{-1}$ and density of water is $10^{3} kg / m^{3}$. What fractional compression of water will be obtained at the bottom of the ocean?

[2015]

(a) $1.0 \times 10^{-2}$

(b) $1.2 \times 10^{-2}$

(c) $1.4 \times 10^{-2}$

(d) $0.8 \times 10^{-2}$

Show Answer

Answer:

Correct Answer: 14.(b)

Solution:

  1. (b) Compressibility of water,

$K=45.4 \times 10^{-11} $ $Pa^{-1}$

density of water $P=10^{3} $ $kg / m^{3}$

depth of ocean, $h=2700 $ $m$

We have to find $\frac{\Delta V}{V}=$ ?

As we know, compressibility,

$K=\frac{1}{B}=\frac{(\Delta V / V)}{P}(P=\rho gh)$

So, $(\Delta V / V)=K \rho gh$

$=45.4 \times 10^{-11} \times 10^{3} \times 10 \times 2700=1.2258 \times 10^{-2}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ