Mechanical Properties Of Fluids Ques 9

9. A certain number of spherical drops of a liquid of radius ’ $r$ ’ coalesce to form a single drop of radius ’ $R$ ’ and volume ’ $V$ ‘. If ’ $T$ ’ is the surface tension of the liquid, then :

[2014]

(a) energy $=4 VT(\frac{1}{r}-\frac{1}{R})$ is released

(b) energy $=3 VT(\frac{1}{r}+\frac{1}{R})$ is absorbed

(c) energy $=3 VT(\frac{1}{r}-\frac{1}{R})$ is released

(d) energy is neither released nor absorbed

Show Answer

Answer:

Correct Answer: 9.(c)

Solution:

  1. (c) Volume same $\Rightarrow n(\frac{4}{3} \pi r^{3})=\frac{4}{3} \pi R^{3}$

$\Rightarrow n=\frac{R^{3}}{r^{3}}$

Change in energy $=T \Delta A=T[4 \pi R^{2}-n 4 \pi r^{2}]$

$=4 \pi T[R^{2}-\frac{R^{3}}{r^{3}} r^{2}]$

$ =3(\frac{4}{3} \pi R^{3}) T[\frac{1}{R}-\frac{1}{r}] $

$=3 VT[\frac{1}{R}-\frac{1}{r}]$ $(R>r)$

$=3 VT[\frac{1}{r}-\frac{1}{R}]$ is released

Energy released when $n$ drops of radius $r$ coalesec to form a body drop of radius $R$,

Energy released $=4 \pi R^{3} T[\frac{1}{r} \frac{-1}{R}]$

If this energy get converted into kinetic energy of big drop, then

$ \begin{aligned} & \frac{1}{2} m v^{2}=4 \pi R^{3} T[\frac{1}{r} \frac{-1}{R}] \\ & \Rightarrow \frac{1}{2}[\frac{4}{3} \pi R^{3} d] V^{2}=4 \pi R^{3} T[\frac{1}{r} \frac{-1}{R}] \\ & \Rightarrow v 2=\frac{6 T}{d}[\frac{1}{r} \frac{-1}{R}] \end{aligned} $

$\Rightarrow$ Velocity of big drop $V=\sqrt{\frac{6 T}{d}(\frac{1}{r} \frac{-1}{R})}$

(Where, $d=$ density of big liquid drop)



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ