Motion In A Plane Ques 23

23. The position vector of a particle is $\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}$. The velocity of the particle is

[1995]

(a) directed towards the origin

(b) directed away from the origin

(c) parallel to the position vector

(d) perpendicular to the position vector

Show Answer

Answer:

Correct Answer: 23.(d)

Solution:

  1. (d) Position vector,

$\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}$

Velocity vector,

$\vec{v}=\frac{d(\vec{r})}{d t}=\frac{d}{d t}{(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}}$

$=(-a \omega \sin \omega t) \hat{i}+(a \omega \cos \omega t) \hat{j}$

$=\omega[(-a \sin \omega t) \hat{i}+(a \cos \omega t) \hat{j}]$

Slope of position vector $=\frac{a \sin \omega t}{a \cos \omega t}=\tan \omega t$

Slope of velocity vector, $=\frac{-a \cos \omega t}{a \sin \omega t}=\frac{-1}{\tan \omega t}$

$\therefore$ velocity is perpendicular to the displacement.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ