Motion In A Plane Ques 26

26. If vectors $\vec{A}=\cos \omega t \hat{i}+\sin \omega t \hat{j}$ and $\vec{B}=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}$ are functions of time, then the value of $t$ at which they are orthogonal to each other is :

[2015 RS]

(a) $t=\frac{\pi}{2 \omega}$

(b) $t=\frac{\pi}{\omega}$

(c) $t=0$

(d) $t=\frac{\pi}{4 \omega}$

Show Answer

Answer:

Correct Answer: 26.(b)

Solution:

  1. (b) Two vectors are

$\overrightarrow{{}A}=\cos \omega t \hat{i}+\sin \omega t \hat{j}$

$\overrightarrow{{}B}=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}$

For two vectors $\vec{A}$ and $\vec{B}$ to be orthogonal $\vec{A} \cdot \vec{B}=0$

$\overrightarrow{{}A} \cdot \overrightarrow{{}B}=0=\cos \omega t \cdot \cos \frac{\omega t}{2}+\sin \omega t \cdot \sin \frac{\omega t}{2}$

$ =\cos (\omega t-\frac{\omega t}{2})=\cos (\frac{\omega t}{2}) $

So, $\frac{\omega t}{2}=\frac{\pi}{2} \therefore t=\frac{\pi}{\omega}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ