Motion In A Plane Ques 28

The horizontal range and the maximum height of a projectile are not necessarily equal. The angle of projection of the projectiles is :

[2012]

(a) $\theta=\tan ^{-1}(\frac{1}{4})$

(b) $\theta=\tan ^{-1}(x)$

(c) $\theta=\tan ^{-1}(2)$

(d) $\theta=45^{\circ}$

Show Answer

Solution:

  1. (b) Horizontal range.

$R=\frac{u^{2} \sin 2 \theta}{g}$

Maximum height,

$H=\frac{u^{2} \sin ^{2} \theta}{2 g}$

According to the condition,

$ R=H $

$\Rightarrow \frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin 2 \theta}{2 g}$

$\Rightarrow \sin 2\theta=\frac{\sin ^{2} \theta}{2}$

$2 \cos \theta=\frac{\sin \theta}{2}$

$\Rightarrow \cot \theta=\frac{1}{4}$

$\Rightarrow \tan \theta=4$

$\Rightarrow \theta=[\tan ^{-1}(4)]$

In case of projectile motion, the range $R$ is $n$ times the maximum height $H$

i.e., $R=n H \Rightarrow \frac{u^{2} \sin 2 \theta}{g}=n \frac{u^{2} \sin ^{2} \theta}{2 g}$

$\Rightarrow Tan \theta=\frac{4}{n}$ Angle of projection $\theta=\tan ^{-1}(\frac{4}{n})$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ